RIblast: an ultrafast RNA-RNA interaction prediction system based on a seed-and-extension approach

被引:73
作者
Fukunaga, Tsukasa [1 ,2 ]
Hamada, Michiaki [1 ,3 ]
机构
[1] Waseda Univ, Fac Sci & Engn, Tokyo 1698555, Japan
[2] Japan Soc Promot Sci, Tokyo 1020083, Japan
[3] Waseda Univ, AIST, Computat Bio Big Data Open Innovat Lab, Tokyo 1698555, Japan
基金
日本学术振兴会;
关键词
LONG NONCODING RNAS; TARGET PREDICTION; IN-VIVO; ACCESSIBILITY; EVOLUTION; GENOMICS; PROBABILITIES; CONSTRAINTS; ANNOTATION; PRINCIPLES;
D O I
10.1093/bioinformatics/btx287
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Motivation: LncRNAs play important roles in various biological processes. Although more than 58 000 human lncRNA genes have been discovered, most known lncRNAs are still poorly characterized. One approach to understanding the functions of lncRNAs is the detection of the interacting RNA target of each lncRNA. Because experimental detections of comprehensive lncRNA-RNA interactions are difficult, computational prediction of lncRNA-RNA interactions is an indispensable technique. However, the high computational costs of existing RNA-RNA interaction prediction tools prevent their application to large-scale lncRNA datasets. Results: Here, we present 'RIblast', an ultrafast RNA-RNA interaction prediction method based on the seed-and-extension approach. RIblast discovers seed regions using suffix arrays and subsequently extends seed regions based on an RNA secondary structure energy model. Computational experiments indicate that RIblast achieves a level of prediction accuracy similar to those of existing programs, but at speeds over 64 times faster than existing programs.
引用
收藏
页码:2666 / 2674
页数:9
相关论文
共 53 条
[31]   Paraspeckle formation during the biogenesis of long non-coding RNAs [J].
Naganuma, Takao ;
Hirose, Tetsuro .
RNA BIOLOGY, 2013, 10 (03) :456-461
[32]   Infernal 1.1: 100-fold faster RNA homology searches [J].
Nawrocki, Eric P. ;
Eddy, Sean R. .
BIOINFORMATICS, 2013, 29 (22) :2933-2935
[33]   Mapping RNA-RNA interactome and RNA structure in vivo by MARIO [J].
Nguyen, Tri C. ;
Cao, Xiaoyi ;
Yu, Pengfei ;
Xiao, Shu ;
Lu, Jia ;
Biase, Fernando H. ;
Sridhar, Bharat ;
Huang, Norman ;
Zhang, Kang ;
Zhong, Sheng .
NATURE COMMUNICATIONS, 2016, 7
[34]   Two Efficient Algorithms for Linear Time Suffix Array Construction [J].
Nong, Ge ;
Zhang, Sen ;
Chan, Wai Hong .
IEEE TRANSACTIONS ON COMPUTERS, 2011, 60 (10) :1471-1484
[35]   An assessment of bacterial small RNA target prediction programs [J].
Pain, Adrien ;
Ott, Alban ;
Amine, Hamza ;
Rochatx, Tatiana ;
Bouloc, Philippe ;
Gautheret, Daniel .
RNA BIOLOGY, 2015, 12 (05) :509-513
[36]   Fast and effective prediction of microRNA/target duplexes [J].
Rehmsmeier, M ;
Steffen, P ;
Höchsmann, M ;
Giegerich, R .
RNA, 2004, 10 (10) :1507-1517
[37]   Accessibility and conservation General features of bacterial small RNA-mRNA interactions? [J].
Richter, Andreas S. ;
Backofen, Rolf .
RNA BIOLOGY, 2012, 9 (07) :954-965
[38]   pROC: an open-source package for R and S plus to analyze and compare ROC curves [J].
Robin, Xavier ;
Turck, Natacha ;
Hainard, Alexandre ;
Tiberti, Natalia ;
Lisacek, Frederique ;
Sanchez, Jean-Charles ;
Mueller, Markus .
BMC BIOINFORMATICS, 2011, 12
[39]   Faster Smith-Waterman database searches with inter-sequence SIMD parallelisation [J].
Rognes, Torbjorn .
BMC BIOINFORMATICS, 2011, 12
[40]   Global Mapping of Human RNA-RNA Interactions [J].
Sharma, Eesha ;
Sterne-Weiler, Tim ;
O'Hanlon, Dave ;
Blencowe, Benjamin J. .
MOLECULAR CELL, 2016, 62 (04) :618-626