RIblast: an ultrafast RNA-RNA interaction prediction system based on a seed-and-extension approach

被引:69
作者
Fukunaga, Tsukasa [1 ,2 ]
Hamada, Michiaki [1 ,3 ]
机构
[1] Waseda Univ, Fac Sci & Engn, Tokyo 1698555, Japan
[2] Japan Soc Promot Sci, Tokyo 1020083, Japan
[3] Waseda Univ, AIST, Computat Bio Big Data Open Innovat Lab, Tokyo 1698555, Japan
基金
日本学术振兴会;
关键词
LONG NONCODING RNAS; TARGET PREDICTION; IN-VIVO; ACCESSIBILITY; EVOLUTION; GENOMICS; PROBABILITIES; CONSTRAINTS; ANNOTATION; PRINCIPLES;
D O I
10.1093/bioinformatics/btx287
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Motivation: LncRNAs play important roles in various biological processes. Although more than 58 000 human lncRNA genes have been discovered, most known lncRNAs are still poorly characterized. One approach to understanding the functions of lncRNAs is the detection of the interacting RNA target of each lncRNA. Because experimental detections of comprehensive lncRNA-RNA interactions are difficult, computational prediction of lncRNA-RNA interactions is an indispensable technique. However, the high computational costs of existing RNA-RNA interaction prediction tools prevent their application to large-scale lncRNA datasets. Results: Here, we present 'RIblast', an ultrafast RNA-RNA interaction prediction method based on the seed-and-extension approach. RIblast discovers seed regions using suffix arrays and subsequently extends seed regions based on an RNA secondary structure energy model. Computational experiments indicate that RIblast achieves a level of prediction accuracy similar to those of existing programs, but at speeds over 64 times faster than existing programs.
引用
收藏
页码:2666 / 2674
页数:9
相关论文
共 53 条
  • [1] NAR Breakthrough Article 7SL RNA represses p53 translation by competing with HuR
    Abdelmohsen, Kotb
    Panda, Amaresh C.
    Kang, Min-Ju
    Guo, Rong
    Kim, Jiyoung
    Grammatikakis, Ioannis
    Yoon, Je-Hyun
    Dudekula, Dawood B.
    Noh, Ji Heon
    Yang, Xiaoling
    Martindale, Jennifer L.
    Gorospe, Myriam
    [J]. NUCLEIC ACIDS RESEARCH, 2014, 42 (15) : 10099 - 10111
  • [2] Predicting effective microRNA target sites in mammalian mRNAs
    Agarwal, Vikram
    Bell, George W.
    Nam, Jin-Wu
    Bartel, David P.
    [J]. ELIFE, 2015, 4
  • [3] BASIC LOCAL ALIGNMENT SEARCH TOOL
    ALTSCHUL, SF
    GISH, W
    MILLER, W
    MYERS, EW
    LIPMAN, DJ
    [J]. JOURNAL OF MOLECULAR BIOLOGY, 1990, 215 (03) : 403 - 410
  • [4] Computational approaches for RNA energy parameter estimation
    Andronescu, Mirela
    Condon, Anne
    Hoos, Holger H.
    Mathews, David H.
    Murphy, Kevin P.
    [J]. RNA, 2010, 16 (12) : 2304 - 2318
  • [5] In Vivo Mapping of Eukaryotic RNA Interactomes Reveals Principles of Higher-Order Organization and Regulation
    Aw, Jong Ghut Ashley
    Shen, Yang
    Wilm, Andreas
    Sun, Miao
    Lim, Xin Ni
    Boon, Kum-Loong
    Tapsin, Sidika
    Chan, Yun-Shen
    Tan, Cheng-Peow
    Sim, Adelene Y. L.
    Zhang, Tong
    Susanto, Teodorus Theo
    Fu, Zhiyan
    Nagarajan, Niranjan
    Wan, Yue
    [J]. MOLECULAR CELL, 2016, 62 (04) : 603 - 617
  • [6] Local RNA base pairing probabilities in large sequences
    Bernhart, SH
    Hofacker, IL
    Stadler, PF
    [J]. BIOINFORMATICS, 2006, 22 (05) : 614 - 615
  • [7] Comprehensive modeling of microRNA targets predicts functional non-conserved and non-canonical sites
    Betel, Doron
    Koppal, Anjali
    Agius, Phaedra
    Sander, Chris
    Leslie, Christina
    [J]. GENOME BIOLOGY, 2010, 11 (08):
  • [8] IntaRNA: efficient prediction of bacterial sRNA targets incorporating target site accessibility and seed regions
    Busch, Anke
    Richter, Andreas S.
    Backofen, Rolf
    [J]. BIOINFORMATICS, 2008, 24 (24) : 2849 - 2856
  • [9] Integrative annotation of human large intergenic noncoding RNAs reveals global properties and specific subclasses
    Cabili, Moran N.
    Trapnell, Cole
    Goff, Loyal
    Koziol, Magdalena
    Tazon-Vega, Barbara
    Regev, Aviv
    Rinn, John L.
    [J]. GENES & DEVELOPMENT, 2011, 25 (18) : 1915 - 1927
  • [10] Paradigm shifts in genomics through the FANTOM projects
    de Hoon, Michiel
    Shin, Jay W.
    Carninci, Piero
    [J]. MAMMALIAN GENOME, 2015, 26 (9-10) : 391 - 402