CFD modeling of CO2 capture by water-based nanofluids using hollow fiber membrane contactor

被引:73
作者
Hajilary, Nasibeh [1 ]
Rezakazemi, Mashallah [2 ]
机构
[1] Golestan Univ, Fac Engn, Dept Chem Engn, Gorgan, Iran
[2] Shahrood Univ Technol, Fac Chem & Mat Engn, Shahrood, Iran
关键词
CFD; CO(2)capture; Hollow fiber; Membrane contactor; Nanofluid; MASS-TRANSFER; CARBON-DIOXIDE; SIMULATION; REMOVAL; ABSORPTION; SEPARATION; FLOW; ADSORPTION; MIXTURES; SORPTION;
D O I
10.1016/j.ijggc.2018.08.002
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
A two-dimensional (2D) model was developed for CO2 removal from a gas mixture using a hollow fiber membrane contactor. Nanofluids of silica and carbon nanotube (CNT) nanoparticles were used as absorbents. The governing equations were solved using computational fluid dynamics technique (CFD). The results of the model were compared with the experimental data and good agreements confirmed the validity of the developed mass transfer model. The results showed that increasing absorbent flowrate enhances the CO2 absorption rate, especially at a low flowrate. The performance of CNT nanofluids is much better than nanosilica. At high liquid flowrate (40 L/h) CNT captures CO2 up to 53.53% while nanosilica captures 37.38%. Also, an increase in the concentration of CNT nanofluid from 0.2 to 0.5 wt.% at a constant flowrate of 20 L/h leads to 20% increase in the CO2 separation while its enhance for nanosilica is 16%.
引用
收藏
页码:88 / 95
页数:8
相关论文
共 50 条
  • [31] Effect of PVDF concentration on the morphology and performance of hollow fiber membrane employed as gas-liquid membrane contactor for CO2 absorption
    Ghasem, Nayef
    Al-Marzouqi, Mohamed
    Duidar, Ali
    SEPARATION AND PURIFICATION TECHNOLOGY, 2012, 98 : 174 - 185
  • [32] Numerical Simulation on Supercritical CO2 Fluid Dynamics in a Hollow Fiber Membrane Contactor
    Valdes, Hugo
    Unda, Kevin
    Saavedra, Aldo
    COMPUTATION, 2019, 7 (01):
  • [33] Soybean and moringa based green biosolvents for low-concentration CO2 capture via a hollow fiber membrane contactor
    Gusnawan, Pri Januar
    Zha, Shangwen
    Zou, Lusi
    Zhang, Guoyin
    Yu, Jianjia
    CHEMICAL ENGINEERING JOURNAL, 2018, 335 : 631 - 637
  • [34] Improvement of CO2 Separation Performance by Blended Aqueous Solutions of DEA plus AMP in Hollow Fiber Membrane Contactor (HFMC)
    Wang, Zhen
    Fang, Mengxiang
    Yan, Shuiping
    Pang, Yili
    Luo, Zhongyang
    RENEWABLE AND SUSTAINABLE ENERGY II, PTS 1-4, 2012, 512-515 : 2308 - 2316
  • [35] Enhancing CO2 absorption efficiency using a novel PTFE hollow fiber membrane contactor at elevated pressure
    Wang, Fushan
    Kang, Guodong
    Liu, Dandan
    Li, Meng
    Cao, Yiming
    AICHE JOURNAL, 2018, 64 (06) : 2135 - 2145
  • [36] CO2/N2 separation by glycerol aqueous solution in a hollow fiber membrane contactor module: CFD simulation and experimental validation
    Saadat, Meisam Mohammadi
    Norouzbahari, Somayeh
    Esmaeili, Majid
    FUEL, 2022, 323
  • [37] The effect of heat treatment on hollow fiber membrane contactor for CO2 stripping
    Hashemifard, S. A.
    Ahmadi, H.
    Ismail, A. F.
    Moarefian, Ahmad
    Abdullah, M. S.
    SEPARATION AND PURIFICATION TECHNOLOGY, 2019, 223 : 186 - 195
  • [38] Development of asymmetric polysulfone hollow fiber membrane contactor for CO2 absorption
    Rahbari-Sisakht, M.
    Ismail, A. F.
    Matsuura, T.
    SEPARATION AND PURIFICATION TECHNOLOGY, 2012, 86 : 215 - 220
  • [39] Effect of operating conditions on the physical and chemical CO2 absorption through the PVDF hollow fiber membrane contactor
    Mansourizadeh, A.
    Ismail, A. F.
    Matsuura, T.
    JOURNAL OF MEMBRANE SCIENCE, 2010, 353 (1-2) : 192 - 200
  • [40] A research on CO2 removal via hollow fiber membrane contactor: The effect of heat treatment
    Ahmadi, H.
    Hashemifard, S. A.
    Ismail, A. F.
    CHEMICAL ENGINEERING RESEARCH & DESIGN, 2017, 120 : 218 - 230