Phase field modeling of CH4 hydrate conversion into CO2 hydrate in the presence of liquid CO2

被引:37
作者
Tegze, G.
Granasy, L.
Kvamme, B.
机构
[1] Res Inst Solid State Phys & Opt, H-1525 Budapest, Hungary
[2] Univ Bergen, Dept Phys, N-5007 Bergen, Norway
关键词
D O I
10.1039/b700423k
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We present phase field simulations to estimate the conversion rate of CH4 hydrate to CO2 hydrate in the presence of liquid CO2 under conditions typical for underwater gas hydrate reservoirs. In the computations, all model parameters are evaluated from physical properties taken from experiment or molecular dynamics simulations. It has been found that hydrate conversion is a diffusion controlled process, as after a short transient, the displacement of the conversion front scales with t(1/2). Assuming a diffusion coefficient of D-s = 1.1 x 10(-11) m(2) s(-1) in the hydrate phase, the predicted time dependent conversion rate is in reasonable agreement with results from magnetic resonance imaging experiments. This value of the diffusion coefficient is higher than expected for the bulk hydrate phase, probably due to liquid inclusions remaining in the porous sample used in the experiment.
引用
收藏
页码:3104 / 3111
页数:8
相关论文
共 59 条
[1]   Experimental measurement of methane and carbon dioxide clathrate hydrate equilibria in mesoporous silica [J].
Anderson, R ;
Llamedo, M ;
Tohidi, B ;
Burgass, RW .
JOURNAL OF PHYSICAL CHEMISTRY B, 2003, 107 (15) :3507-3514
[2]  
BREWER P, 2002, REPORT HYDRATE ADVIS
[3]   Gas solubility measurement and modeling for methane-water and methane-ethane-n-butane-water systems at low temperature conditions [J].
Chapoy, A ;
Mohammadi, AH ;
Richon, D ;
Tohidi, B .
FLUID PHASE EQUILIBRIA, 2004, 220 (01) :113-121
[4]   Phase-field simulations of solidification in binary and ternary systems using a finite element method [J].
Danilov, D. ;
Nestler, B. .
JOURNAL OF CRYSTAL GROWTH, 2005, 275 (1-2) :E177-E182
[5]   Dendritic to globular morphology transition in ternary alloy solidification [J].
Danilov, D ;
Nestler, B .
PHYSICAL REVIEW LETTERS, 2004, 93 (21)
[6]   Computations of diffusivities in ice and CO2 clathrate hydrates via molecular dynamics and Monte Carlo simulations [J].
Demurov, A ;
Radhakrishnan, R ;
Trout, BL .
JOURNAL OF CHEMICAL PHYSICS, 2002, 116 (02) :702-709
[7]   Solubility of CO2 in water from -1.5 to 100°C and from 0.1 to 100 MPa:: evaluation of literature data and thermodynamic modelling [J].
Diamond, LW ;
Akinfiev, NN .
FLUID PHASE EQUILIBRIA, 2003, 208 (1-2) :265-290
[8]   Atmospheric methane levels off: Temporary pause or a new steady-state? [J].
Dlugokencky, EJ ;
Houweling, S ;
Bruhwiler, L ;
Masarie, KA ;
Lang, PM ;
Miller, JB ;
Tans, PP .
GEOPHYSICAL RESEARCH LETTERS, 2003, 30 (19) :ASC5-1
[9]   STOCHASTIC EUTECTIC GROWTH [J].
ELDER, KR ;
DROLET, F ;
KOSTERLITZ, JM ;
GRANT, M .
PHYSICAL REVIEW LETTERS, 1994, 72 (05) :677-680
[10]   Diffusion coefficients of model contaminants in dense CO2 [J].
Fu, H ;
Coelho, LAF ;
Matthews, MA .
JOURNAL OF SUPERCRITICAL FLUIDS, 2000, 18 (02) :141-155