On fixing sets of composition and corona product of graphs

被引:0
|
作者
Javaid, Imran [1 ]
Aasi, M. Shahhaz [1 ]
Irshad, Iqra [1 ]
Salman, Muhammad [1 ]
机构
[1] Bahauddin Zakariya Univ Multan, Ctr Adv Studies Pure & Appl Math, Multan, Pakistan
关键词
Fixing set; composition product of graphs; corona product of graphs; LEXICOGRAPHIC PRODUCT; METRIC DIMENSION;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A fixing set F of a graph G is a set of those vertices of the graph G which when assigned distinct labels removes all the automorphisms from the graph except the trivial one. The fixing number of a graph G, denoted by fix(G), is the smallest cardinality of a fixing set of G. In this paper, we study the fixing number of composition product, G(1) [G(2)] and corona product, G(1) circle dot G(2) of two graphs G(1) and G(2) with orders m and n respectively. We show that for a connected graph G(1) and an arbitrary graph G(2) having l >= 1 components G(2)(1), G(2)(2), mn 1 - >= fix(G(1)[G(2)]) >= m fix(Sigma(i)(i=1) fix (G(2)(i))) For a connected graph G(1) and an arbitrary graph G(2) which are not asymmetric, we prove that fix(G(1)circle dot G(2)) = m fix(G(2)). Further, for an arbitrary connected graph G(1) and an arbitrary graph G(2) we show that fix(G(1) circle dot G2) = max{f ix(G(1)), m f ix(G(2))}.
引用
收藏
页码:17 / 28
页数:12
相关论文
共 50 条
  • [1] Distance k-Cost Effective Sets in the Corona and Lexicographic Product of Graphs
    Caadan, Julius G.
    Paluga, Rolando N.
    Aniversario, Imelda S.
    EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2023, 16 (01): : 261 - 270
  • [2] Stable Locating-Dominating Sets in the Edge Corona and Lexicographic Product of Graphs
    Malacas, Gina A.
    Canoy Jr, Sergio R.
    Chacon, Emmy
    EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2023, 16 (01): : 479 - 490
  • [3] On 2-Resolving Hop Dominating Sets in the Join, Corona and Lexicographic Product of Graphs
    Mahistrado, Angelica Mae
    Rara, Helen
    EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2022, 15 (04): : 1982 - 1997
  • [4] On the fractional metric dimension of corona product graphs and lexicographic product graphs
    Feng, Min
    Kong, Qian
    ARS COMBINATORIA, 2018, 138 : 249 - 260
  • [5] On the metric dimension of corona product graphs
    Yero, I. G.
    Kuziak, D.
    Rodriguez-Velazquez, J. A.
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2011, 61 (09) : 2793 - 2798
  • [6] The partition dimension of corona product graphs
    Rodriguez-Velazquez, Juan A.
    Yero, Ismael G.
    Kuziak, Dorota
    ARS COMBINATORIA, 2016, 127 : 387 - 399
  • [7] On automorphisms and fixing number of co-normal product of graphs
    Ur Rehman, Shahid
    Imran, Muhammad
    Javaid, Imran
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2024, 55 (04) : 1210 - 1221
  • [8] The doubly metric dimension of corona product graphs
    Nie, Kairui
    Xu, Kexiang
    FILOMAT, 2023, 37 (13) : 4375 - 4386
  • [9] On the Local Metric Dimension of Corona Product Graphs
    Rodriguez-Velazquez, Juan A.
    Barragan-Ramirez, Gabriel A.
    Garcia Gomez, Carlos
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2016, 39 : S157 - S173
  • [10] The Dominant Metric Dimension of Corona Product Graphs
    Adirasari, Rembulan Putri
    Suprajitno, Herry
    Susilowati, Liliek
    BAGHDAD SCIENCE JOURNAL, 2021, 18 (02) : 349 - 356