Combinatorics of the q-characters of Hernandez-Leclerc modules

被引:5
作者
Guo, JingMin [1 ]
Duan, Bing [1 ,2 ]
Luo, Yan-Feng [1 ]
机构
[1] Lanzhou Univ, Sch Math & Stat, Lanzhou 730000, Peoples R China
[2] Lanzhou Univ, Sch Phys Sci & Technol, Lanzhou 730000, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
Quantum affine algebras; Cluster algebras; Hernandez-Leclerc modules; q-characters; CLUSTER ALGEBRAS; REPRESENTATIONS; POTENTIALS; QUIVERS;
D O I
10.1016/j.jalgebra.2022.04.024
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let g be a complex simple Lie algebra and U-q((g) over cap) be the corresponding untwisted quantum affine algebra. In this paper, we give a path description of the q-characters of Hernandez-Leclerc modules, show that up to spectral parameter shift, the equivalent classes of Hernandez-Leclerc modules in the Grothendieck ring of the category of finite-dimensional U-q((sl(n+1)) over cap)-modules are cluster variables in the cluster algebra introduced by Hernandez and Leclerc, and finally prove that the geometric q-character formula conjecture is true for Hernandez-Leclerc modules. (c) 2022 Elsevier Inc. All rights reserved.
引用
收藏
页码:253 / 295
页数:43
相关论文
共 36 条
[11]  
Duan B, 2020, Arxiv, DOI arXiv:2009.09461
[12]   A geometric q-character formula for snake modules [J].
Duan, Bing ;
Schiffler, Ralf .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2020, 102 (02) :846-878
[13]   Cluster algebras and snake modules [J].
Duan, Bing ;
Li, Jian-Rong ;
Luo, Yan-Feng .
JOURNAL OF ALGEBRA, 2019, 519 :325-377
[14]   Cluster algebras II: Finite type classification [J].
Fomin, S ;
Zelevinsky, A .
INVENTIONES MATHEMATICAE, 2003, 154 (01) :63-121
[15]   Cluster algebras I: Foundations [J].
Fomin, S ;
Zelevinsky, A .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2002, 15 (02) :497-529
[16]   Cluster algebras IV: Coefficients [J].
Fomin, Sergey ;
Zelevinsky, Andrei .
COMPOSITIO MATHEMATICA, 2007, 143 (01) :112-164
[17]   Combinatorics of q-characters of finite-dimensional representations of quantum affine algebras [J].
Frenkel, E ;
Mukhin, E .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2001, 216 (01) :23-57
[18]  
Frenkel E, 1999, Contemp. Math., V248, P163, DOI DOI 10.1090/CONM/248/03823
[19]   A cluster algebra approach to q-characters of Kirillov-Reshetikhin modules [J].
Hernandez, D. ;
Leclerc, B. .
JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2016, 18 (05) :1113-1159
[20]   The Kirillov-Reshetikhin conjecture and solutions of T-systems [J].
Hernandez, David .
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2006, 596 :63-87