Euler numbers of Hilbert schemes of points on simple surface singularities and quantum dimensions of standard modules of quantum affine algebras

被引:1
作者
Nakajima, Hiraku [1 ,2 ]
机构
[1] Univ Tokyo, Kavli Inst Phys & Math Universe IPMU, Kashiwa, Chiba, Japan
[2] Kyoto Univ, Res Inst Math Sci, Kyoto, Japan
基金
日本学术振兴会;
关键词
QUIVER GAUGE-THEORIES; COULOMB BRANCHES; VARIETIES; SPACES;
D O I
10.1215/21562261-2021-0006
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove a recent conjecture by Gyenge, Nemethi, and Szendroi giving a formula of the generating function of Euler numbers of Hilbert schemes of points Hilb(N) (C-2/Gamma) on a simple singularity C-2/Gamma, where F is a finite subgroup of SL(2). We deduce it from the claim that quantum dimensions of standard modules for the quantum affine algebra associated with Gamma at zeta = exp(2 pi root-1/2(h(boolean OR)+1)) are always 1, which is a special case of an earlier conjecture by Kuniba. Here h(boolean OR) is the dual Coxeter number. We also prove the claim, which was not known for E-7, E-8 before.
引用
收藏
页码:377 / 397
页数:21
相关论文
共 39 条
[31]  
Nakajima H., 2002, Proceedings of the International Congress of Mathematicians, Vol. I (Beijing, P423, DOI 10.48550/arXiv.math/0212401
[32]  
Nakajima H., 1999, U LECT SER, V18, DOI [10.1090/ ulect/ 018, DOI 10.1090/ULECT/018]
[33]  
Nakajima H., 2003, Contemp. Math., V325, P141
[34]   Cherkis bow varieties and Coulomb branches of quiver gauge theories of affine type A [J].
Nakajima, Hiraku ;
Takayama, Yuuya .
SELECTA MATHEMATICA-NEW SERIES, 2017, 23 (04) :2553-2633
[35]   Quiver Varieties and Branching [J].
Nakajima, Hiraku .
SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2009, 5
[36]   COHOMOLOGY OF QUANTUM GROUPS - THE QUANTUM DIMENSION [J].
PARSHALL, B ;
WANG, JP .
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1993, 45 (06) :1276-1298
[37]  
Toda Y, 2015, MATH ANN, V363, P679, DOI 10.1007/s00208-015-1184-1
[38]  
Varagnolo M, 2002, DUKE MATH J, V111, P509
[39]  
Yamagishi R., ARXIV170905886V4