Euler numbers of Hilbert schemes of points on simple surface singularities and quantum dimensions of standard modules of quantum affine algebras

被引:1
作者
Nakajima, Hiraku [1 ,2 ]
机构
[1] Univ Tokyo, Kavli Inst Phys & Math Universe IPMU, Kashiwa, Chiba, Japan
[2] Kyoto Univ, Res Inst Math Sci, Kyoto, Japan
基金
日本学术振兴会;
关键词
QUIVER GAUGE-THEORIES; COULOMB BRANCHES; VARIETIES; SPACES;
D O I
10.1215/21562261-2021-0006
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove a recent conjecture by Gyenge, Nemethi, and Szendroi giving a formula of the generating function of Euler numbers of Hilbert schemes of points Hilb(N) (C-2/Gamma) on a simple singularity C-2/Gamma, where F is a finite subgroup of SL(2). We deduce it from the claim that quantum dimensions of standard modules for the quantum affine algebra associated with Gamma at zeta = exp(2 pi root-1/2(h(boolean OR)+1)) are always 1, which is a special case of an earlier conjecture by Kuniba. Here h(boolean OR) is the dual Coxeter number. We also prove the claim, which was not known for E-7, E-8 before.
引用
收藏
页码:377 / 397
页数:21
相关论文
共 39 条
[1]   Geometric Satake, Springer correspondence and small representations [J].
Achar, Pramod N. ;
Henderson, Anthony .
SELECTA MATHEMATICA-NEW SERIES, 2013, 19 (04) :949-986
[2]   TENSOR-PRODUCTS OF QUANTIZED TILTING MODULES [J].
ANDERSEN, HH .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1992, 149 (01) :149-159
[3]   A quantum cluster algebra approach to representations of simply laced quantum affine algebras [J].
Bittmann, Lea .
MATHEMATISCHE ZEITSCHRIFT, 2021, 298 (3-4) :1449-1485
[4]  
BORHO W, 1983, ASTERISQUE, P23
[5]   Coulomb branches of 3d N=4 quiver gauge theories and slices in the affine Grassmannian [J].
Braverman, Alexander ;
Finkelberg, Michael ;
Nakajima, Hiraku .
ADVANCES IN THEORETICAL AND MATHEMATICAL PHYSICS, 2019, 23 (01) :75-166
[6]   Normality of Marsden-Weinstein reductions for representations of quivers [J].
Crawley-Boevey, W .
MATHEMATISCHE ANNALEN, 2003, 325 (01) :55-79
[7]   Proof of the Combinatorial Kirillov-Reshetikhin Conjecture [J].
Di Francesco, Philippe ;
Kedem, Rinat .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2008, 2008
[8]  
Dijkgraaf R., 2008, J HIGH ENERGY PHYS
[9]  
Fulton W., 1991, GRAD TEXTS MATH, V129
[10]   On the KNS Conjecture in Type E [J].
Gleitz, Anne-Sophie .
ANNALS OF COMBINATORICS, 2014, 18 (04) :617-643