UO2/BeO interfacial thermal resistance and its effect on fuel thermal conductivity

被引:10
作者
Zhu, Xueyan [1 ,2 ]
Gao, Rui [3 ]
Gong, Hengfeng [4 ]
Liu, Tong [4 ]
Lin, De-Ye [1 ,2 ]
Song, Haifeng [1 ,2 ]
机构
[1] CAEP Software Ctr High Performance Numer Simulat, Beijing 100088, Peoples R China
[2] Inst Appl Phys & Computat Math, Beijing 100088, Peoples R China
[3] China Acad Engn Phys, Inst Mat, Jiangyou 621908, Sichuan, Peoples R China
[4] China Nucl Power Technol Res Inst, Shenzhen 518031, Peoples R China
基金
中国国家自然科学基金;
关键词
Uranium dioxide; Beryllium oxide; Composite nuclear fuel; Interfacial thermal resistance; Thermal conductivity; OXIDE; PERFORMANCE; COMPOSITES; DYNAMICS;
D O I
10.1016/j.anucene.2020.108102
中图分类号
TL [原子能技术]; O571 [原子核物理学];
学科分类号
0827 ; 082701 ;
摘要
UO2/BeO interfacial thermal resistance (ITR) is calculated by diffuse mismatch model (DMM), and the effects of ITR on UO2-BeO thermal conductivity are investigated. DMM can predict UO2/dispersed-BeO ITR within the accuracy of orders of magnitude. However, UO2/continuous-BeO ITR is three to four orders of magnitude larger than DMM predictions. This indicates that UO2/dispersed-BeO ITR is mainly induced by the vibrational mismatch, while UO2/continuous-BeO ITR may be attributed to the contact resistance. The thermal conductivity of UO2 containing dispersed BeO decreases with the decrease in BeO size, and the thermal conductivity of UO2 containing continuous BeO decreases with the decrease in the size of UO2 granule surrounded by BeO. The conditions for achieving the targeted enhancement of UO2 thermal conductivity by doping with BeO are derived. These conditions can be used to design and optimize the distribution, content, size of BeO, and the size of UO2 granule. (C) 2020 Published by Elsevier Ltd.
引用
收藏
页数:8
相关论文
共 29 条
[1]   An Experimentally Validated Mesoscale Model of Thermal Conductivity of a UO2 and BeO Composite Nuclear Fuel [J].
Badry, Fergany ;
Brito, Ryan ;
Abdoelatef, M. Gomaa ;
McDeavitt, Sean ;
Ahmed, Karim .
JOM, 2019, 71 (12) :4829-4838
[3]   PROJECTOR AUGMENTED-WAVE METHOD [J].
BLOCHL, PE .
PHYSICAL REVIEW B, 1994, 50 (24) :17953-17979
[4]   Lattice dynamics of beryllium oxide:: Inelastic x-ray scattering and ab initio calculations [J].
Bosak, Alexey ;
Schmalzl, Karin ;
Krisch, Michael ;
van Beek, Wouter ;
Kolobanov, Vitaly .
PHYSICAL REVIEW B, 2008, 77 (22)
[5]   THERMAL-CONDUCTIVITY AND THERMAL-RADIATION PROPERTIES OF UO2 [J].
BRANDT, R ;
NEUER, G .
JOURNAL OF NON-EQUILIBRIUM THERMODYNAMICS, 1976, 1 (01) :3-23
[6]   CRYSTAL DYNAMICS OF URANIUM DIOXIDE [J].
DOLLING, G ;
COWLEY, RA ;
WOODS, ADB .
CANADIAN JOURNAL OF PHYSICS, 1965, 43 (08) :1397-&
[7]   Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+U study [J].
Dudarev, SL ;
Botton, GA ;
Savrasov, SY ;
Humphreys, CJ ;
Sutton, AP .
PHYSICAL REVIEW B, 1998, 57 (03) :1505-1509
[8]   Thermophysical properties of uranium dioxide [J].
Fink, JK .
JOURNAL OF NUCLEAR MATERIALS, 2000, 279 (01) :1-18
[9]  
Garcia CB, 2017, METALL MATER TRANS E, V4, P70, DOI 10.1007/s40553-017-0108-2
[10]   EFFECTIVE THERMAL-CONDUCTIVITY OF COMPOSITES WITH INTERFACIAL THERMAL BARRIER RESISTANCE [J].
HASSELMAN, DPH ;
JOHNSON, LF .
JOURNAL OF COMPOSITE MATERIALS, 1987, 21 (06) :508-515