Fatigue behavior of additive manufactured 316L stainless steel parts: Effects of layer orientation and surface roughness

被引:179
|
作者
Shrestha, Rakish [1 ,2 ]
Simsiriwong, Jutima [1 ,2 ]
Shamsaei, Nima [1 ,2 ]
机构
[1] Auburn Univ, Dept Mech Engn, Auburn, AL 36849 USA
[2] Auburn Univ, NCAME, Auburn, AL 36849 USA
基金
美国国家科学基金会;
关键词
Fatigue; Surface roughness; Build orientation; Laser beam powder bed fusion (LB-PBF); Fatigue modeling; MECHANICAL-PROPERTIES; FRACTURE-BEHAVIOR; LASER DEPOSITION; MICROSTRUCTURE; TI-6AL-4V; HETEROGENEITY; OPTIMIZATION; PERFORMANCE; PARAMETERS; RESISTANCE;
D O I
10.1016/j.addma.2019.04.011
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The effects of layer orientation and surface roughness on the mechanical properties and fatigue life of 316L stainless steel (SS) fabricated via a laser beam powder bed fusion (LB-PBF) additive manufacturing process were investigated. Quasi-static tensile and uniaxial fatigue tests were conducted on LB-PBF 316L SS specimens fabricated in vertical and diagonal directions in their as-built surface condition, as well as in horizontal, vertical, and diagonal directions where the surface had been machined to remove any effects of surface roughness. In the machined condition, horizontally built LB-PBF specimens possessed higher fatigue resistance, followed by vertically built specimens, while the lowest fatigue resistance was obtained for diagonal specimens. Similarly, in the as-built condition, vertical specimens demonstrated better fatigue resistance when compared to diagonal specimens. Furthermore, the detrimental effects of surface roughness on fatigue life of LB-PBF 316L SS specimens was not significant, which may be due to the presence of large internal defects in the specimens. Anisotropy of LB-PBF 316L SS specimens was attributed to the variation in layer orientation, affecting defects' directionality with respect to the loading direction. These defect characteristics can significantly influence the stress concentration and, consequently, fatigue behavior of additive manufactured parts. Therefore, the elastic-plastic energy release rates, a fracture mechanics-based concept that incorporates size, location, and projected area of defects on the loading plane, were determined to correlate the fatigue data and acceptable results were achieved.
引用
收藏
页码:23 / 38
页数:16
相关论文
共 50 条
  • [21] Thermomechanical fatigue of additively manufactured 316L stainless steel
    Babinsky, T.
    Sulak, I.
    Kubena, I.
    Man, J.
    Weiser, A.
    Svabenska, E.
    Englert, L.
    Guth, S.
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2023, 869
  • [22] Influence of internal and surface defects on the fatigue performance of additively manufactured stainless steel 316L
    Dastgerdi, Jairan Nafar
    Jaberi, Omid
    Remes, Heikki
    INTERNATIONAL JOURNAL OF FATIGUE, 2022, 163
  • [23] Effects of surface quality on corrosion resistance of 316L stainless steel parts manufactured via SLM
    Zhang, Yongzhi
    Liu, Furong
    Chen, Jimin
    Yuan, Yanping
    JOURNAL OF LASER APPLICATIONS, 2017, 29 (02)
  • [24] Effect of micro-defects on fatigue lifetime of additive manufactured 316L stainless steel under multiaxial loading
    Wang, Yingyu
    Su, Zhenli
    THEORETICAL AND APPLIED FRACTURE MECHANICS, 2021, 111
  • [25] Cavitation Erosion Behavior of 316L Stainless Steel
    Gao, Guiyan
    Zhang, Zheng
    TRIBOLOGY LETTERS, 2019, 67 (04)
  • [26] Machine-to-machine variability of roughness and corrosion in additively manufactured 316L stainless steel
    Clark, C. L.
    Karasz, E. K.
    Melia, M.
    Hooks, D. E.
    Hackenberg, R.
    Colon-Mercado, H.
    Ganesan, P.
    Renner, P.
    Cho, S.
    Wu, M.
    Qiu, S. R.
    Dwyer, J.
    Rueger, Z.
    Gorey, T. J.
    Koehn, Z.
    Stull, J. A.
    JOURNAL OF MANUFACTURING PROCESSES, 2023, 106 : 380 - 392
  • [27] Fatigue behaviors of AISI 316L stainless steel with a gradient nanostructured surface layer
    Huang, H. W.
    Wang, Z. B.
    Lu, J.
    Lu, K.
    ACTA MATERIALIA, 2015, 87 : 150 - 160
  • [28] The effect of process parameters and scanning strategies on surface roughness of stainless steel 316L SLM parts
    Sadeghi, Mohamad Sina
    Mohseni, Maede
    Etefagh, Ardeshir Hemasian
    Khajehzadeh, Mohsen
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART E-JOURNAL OF PROCESS MECHANICAL ENGINEERING, 2023, 237 (06) : 2510 - 2519
  • [29] Multiaxial fatigue behavior and modelling of additive manufactured Ti-6Al-4V parts: The effects of layer orientation and surface texture
    Carrion, Patricio E.
    Sausto, Francesco
    Beretta, Stefano
    Shamsaei, Nima
    INTERNATIONAL JOURNAL OF FATIGUE, 2023, 176
  • [30] Low cycle fatigue of additively manufactured thin-walled stainless steel 316L
    Yu, Cheng-Han
    Leicht, Alexander
    Peng, Ru Lin
    Moverare, Johan
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2021, 821