Wind Turbine Wake Mitigation through Blade Pitch Offset

被引:45
作者
Dilip, Deepu [1 ]
Porte-Agel, Fernando [1 ]
机构
[1] Ecole Polytech Fed Lausanne, Sch Architecture Civil & Environm Engn ENAC, Wind Engn & Renewable Energy Lab WIRE, CH-1015 Lausanne, Switzerland
基金
瑞士国家科学基金会;
关键词
large-eddy simulation (LES); wind turbine wake; atmospheric boundary layer (ABL); rotational actuator disk model (ADM-R); pitch offset; LARGE-EDDY-SIMULATION; DEPENDENT DYNAMIC-MODEL; CONTROL STRATEGY; POWER-CONTROL; FARM; FLOW; OPTIMIZATION; TURBULENCE; LOSSES;
D O I
10.3390/en10060757
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
The reduction in power output associated with complex turbine-wake interactions in wind farms necessitates the development of effective wake mitigation strategies. One approach to this end entails the downregulation of individual turbines from its maximum power point with the objective of optimizing the overall wind farm productivity. Downregulation via blade pitch offset has been of interest as a potential strategy, though the viability of this method is still not clear, especially in regard to its sensitivity to ambient turbulence. In this study, large-eddy simulations of a two-turbine arrangement, with the second turbine in the full wake of the first, were performed. The effects of varying the blade pitch angle of the upstream turbine on its wake characteristics, as well as the combined power of the two, were investigated. Of specific interest was the effect of turbulence intensity of the inflow on the efficacy of this method. Results showed enhanced wake recovery associated with pitching to stall, as opposed to pitching to feather, which delayed wake recovery. The increased wake recovery resulted in a noticeable increase in the power of the two-turbine configuration, only in conditions characterized by low turbulence in the incoming flow. Nevertheless, the low turbulence scenarios where the use of this method is favorable, are expected in realistic wind farms, suggesting its possible application for improved power generation.
引用
收藏
页数:17
相关论文
共 60 条
[1]   Wake flow in a wind farm during a diurnal cycle [J].
Abkar, Mahdi ;
Sharifi, Ahmad ;
Porte-Agel, Fernando .
JOURNAL OF TURBULENCE, 2016, 17 (04) :420-441
[2]   Large-eddy simulation of the diurnal variation of wake flows in a finite-size wind farm [J].
Abkar, Mahdi ;
Sharifi, Ahmad ;
Porte-Agel, Fernando .
WAKE CONFERENCE 2015, 2015, 625
[3]   Influence of atmospheric stability on wind-turbine wakes: A large-eddy simulation study [J].
Abkar, Mahdi ;
Porte-Agel, Fernando .
PHYSICS OF FLUIDS, 2015, 27 (03)
[4]   A new wind-farm parameterization for large-scale atmospheric models [J].
Abkar, Mahdi ;
Porte-Agel, Fernando .
JOURNAL OF RENEWABLE AND SUSTAINABLE ENERGY, 2015, 7 (01)
[5]   The Effect of Free-Atmosphere Stratification on Boundary-Layer Flow and Power Output from Very Large Wind Farms [J].
Abkar, Mahdi ;
Porte-Agel, Fernando .
ENERGIES, 2013, 6 (05) :2338-2361
[6]   Experimental investigation of wake effects on wind turbine performance [J].
Adaramola, M. S. ;
Krogstad, P. -A. .
RENEWABLE ENERGY, 2011, 36 (08) :2078-2086
[7]   Coordinated Operation Strategy of Wind Farms for Frequency Control by Exploring Wake Interaction [J].
Ahmadyar, Ahmad Shabir ;
Verbic, Gregor .
IEEE TRANSACTIONS ON SUSTAINABLE ENERGY, 2017, 8 (01) :230-238
[8]   Surface length scales and shear stress: Implications for land-atmosphere interaction over complex terrain [J].
Albertson, JD ;
Parlange, MB .
WATER RESOURCES RESEARCH, 1999, 35 (07) :2121-2132
[9]   Analysis of axial-induction-based wind plant control using an engineering and a high-order wind plant model [J].
Annoni, Jennifer ;
Gebraad, Pieter M. O. ;
Scholbrock, Andrew K. ;
Fleming, Paul A. ;
van Wingerden, Jan-Willem .
WIND ENERGY, 2016, 19 (06) :1135-1150
[10]  
Annoni J, 2014, P AMER CONTR CONF, P2517, DOI 10.1109/ACC.2014.6858970