Note on limit cycles for m-piecewise discontinuous polynomial Lienard differential equations

被引:15
作者
Dong, Guangfeng [1 ]
Liu, Changjian [2 ]
机构
[1] Jinan Univ, Dept Math, Guangzhou 510632, Guangdong, Peoples R China
[2] Soochow Univ, Sch Math, Suzhou 215006, Peoples R China
来源
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK | 2017年 / 68卷 / 04期
关键词
Limit cycle; Piecewise differential system; Lienard differential system; Averaging method;
D O I
10.1007/s00033-017-0844-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the limit cycles for m-piecewise discontinuous polynomial Lienard differential systems of degree n with m/2 straight lines passing through the origin whose slopes are tan(alpha + 2j pi/m) for j = 0, 1, ... , m/2 - 1, and prove that for any positive even number m, if sin(m alpha/2) not equal 0, then there always exists such a system possessing at least [1/2(n - m-2/2)] limit cycles. This result verifies a conjecture proposed by Llibre and Teixerira (Z Angew Math Phys 66:51-66, 2015).
引用
收藏
页数:8
相关论文
共 7 条
[1]  
DiBernardo M, 2008, APPL MATH SCI, V163, P1, DOI 10.1007/978-1-84628-708-4
[2]   Qualitative bifurcation analysis of a non-smooth friction-oscillator model [J].
Kunze, M ;
Kupper, T .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 1997, 48 (01) :87-101
[3]   Averaging theory at any order for computing limit cycles of discontinuous piecewise differential systems with many zones [J].
Llibre, Jaume ;
Novaes, Douglas D. ;
Rodrigues, Camila A. B. .
PHYSICA D-NONLINEAR PHENOMENA, 2017, 353 :1-10
[4]   Averaging theory for discontinuous piecewise differential systems [J].
Llibre, Jaume ;
Mereu, Ana C. ;
Novaes, Douglas D. .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2015, 258 (11) :4007-4032
[5]   Limit cycles for m-piecewise discontinuous polynomial Li,nard differential equations [J].
Llibre, Jaume ;
Teixeira, Marco Antonio .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2015, 66 (01) :51-66
[6]  
Novaes D. D., 2014, PUBL MAT EXTRA, P395
[7]  
TEIXEIRA M. A., 2009, ENCY COMPLEXITY SYST