Second Harmonic Imaging Enhanced by Deep Learning Decipher

被引:6
作者
Fang, Weiru [1 ,2 ,3 ]
Chen, Tianrun [1 ,2 ,3 ]
Gil, Eddie [4 ,5 ]
Zhu, Shiyao [1 ,2 ,3 ]
Yakovlev, Vladislav [4 ,5 ]
Wang, Da-Wei [1 ,2 ,3 ,6 ]
Zhang, Delong [1 ,2 ,3 ]
机构
[1] Zhejiang Univ, Interdisciplinary Ctr Quantum Informat, Hangzhou 310027, Peoples R China
[2] Zhejiang Univ, State Key Lab Modern Opt Instrumentat, Zhejiang Prov Key Lab Quantum Technol & Device, Hangzhou 310027, Peoples R China
[3] Zhejiang Univ, Dept Phys, Hangzhou 310027, Peoples R China
[4] Texas A&M Univ, Dept Biomed Engn, Dept Phys & Astron, College Stn, TX 77843 USA
[5] Texas A&M Univ, Dept Elect & Comp Engn, College Stn, TX 77843 USA
[6] Zhejiang Lab, Hangzhou 311121, Peoples R China
基金
美国国家卫生研究院; 美国国家科学基金会;
关键词
phase imaging; wavefront sensing; deep learning; second harmonic generation; nonlinear optics; PHASE-CONTRAST; GENERATION; SEGMENTATION; EFFICIENCY; FIELD;
D O I
10.1021/acsphotonics.1c00395
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Wavefront sensing and reconstruction are widely used for adaptive optics, aberration correction, and high-resolution optical phase imaging. Traditionally, interference and/or microlens arrays are used to convert the optical phase into intensity variation. Direct imaging of distorted wavefront usually results in complicated phase retrieval with low contrast and low sensitivity. Here, a novel nonlinear optical encoding approach has been developed and experimentally demonstrated using optical second harmonic generation to sharpen the phase information carried by the probe beam. By designing and implementing a deep neural network, we demonstrate the second harmonic imaging enhanced by a deep learning decipher (SHIELD) for efficient and resilient phase retrieval. Inheriting the advantages of two-photon microscopy, SHIELD demonstrates single-shot, reference-free, and video-rate phase imaging with sensitivity better than lambda/100 and high robustness against noise, facilitating numerous applications from biological imaging to wavefront sensing.
引用
收藏
页码:1562 / 1568
页数:7
相关论文
共 34 条
[1]  
[Anonymous], 2011, Quantitative Phase Imaging of Cells and Tissues
[2]   On instabilities of deep learning in image reconstruction and the potential costs of AI [J].
Antun, Vegard ;
Renna, Francesco ;
Poon, Clarice ;
Adcock, Ben ;
Hansen, Anders C. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2020, 117 (48) :30088-30095
[3]   General numerical methods for simulating second-order nonlinear interactions in birefringent media [J].
Arisholm, G .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 1997, 14 (10) :2543-2549
[4]   Adaptive optical microscopy: the ongoing quest for a perfect image [J].
Booth, Martin J. .
LIGHT-SCIENCE & APPLICATIONS, 2014, 3 :e165-e165
[5]  
Boyd R.W., 2003, Nonlinear Optics, DOI [10.1016/B978-0-12-121682-5.X5000-7/, DOI 10.1016/B978-0-12-121682-5.X5000-7, 10.1016/B978-0-12-121682-5.X5000-7]
[6]   Wavefront sensing: From historical roots to the state-of-the-art [J].
Campbell, H. I. ;
Greenaway, A. H. .
ASTRONOMY WITH HIGH CONTRAST IMAGING III: INSTRUMENTAL TECHNIQUES, MODELING AND DATA PROCESSING, 2006, 22 :165-+
[7]   Machine learning and the physical sciences [J].
Carleo, Giuseppe ;
Cirac, Ignacio ;
Cranmer, Kyle ;
Daudet, Laurent ;
Schuld, Maria ;
Tishby, Naftali ;
Vogt-Maranto, Leslie ;
Zdeborova, Lenka .
REVIEWS OF MODERN PHYSICS, 2019, 91 (04)
[8]   Digital holography for quantitative phase-contrast imaging [J].
Cuche, E ;
Bevilacqua, F ;
Depeursinge, C .
OPTICS LETTERS, 1999, 24 (05) :291-293
[9]  
Eldan R., 2016, C LEARN THEOR, P907
[10]   Densely Connected Convolutional Networks [J].
Huang, Gao ;
Liu, Zhuang ;
van der Maaten, Laurens ;
Weinberger, Kilian Q. .
30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, :2261-2269