Macroscopic orientation component analysis of brain white matter and thalamus based on diffusion tensor imaging

被引:23
作者
Wakana, S
Nagae-Poetscher, LM
Jiang, HY
van Zijl, P
Golay, X
Mori, S
机构
[1] Johns Hopkins Univ, Sch Med, Dept Radiol & Radiol Sci, Baltimore, MD USA
[2] FM Kirby Res Ctr Funct Brain Imaging, Kennedy Krieger Inst, Baltimore, MD USA
关键词
D O I
10.1002/mrm.20386
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Diffusion tensor imaging (DTI) can delineate white matter architecture based on fiber orientation. The purpose of this paper is to use the orientation information contained in DTI to study axonal organization of the brain both macroscopically and quantitatively. After performing gray/white matter segmentation using a fractional anisotropy threshold, the white matter can be further decomposed into components composed of tracts oriented along three orthogonal anatomic axes (right-left, superior-inferior, and anterior-posterior). For each component, the volume and MR parameters were quantified. To characterize the axonal architecture of the brain, this technique was applied to the entire brain using a Talairach-based brain parcellation method and to the thalamus by manual segmentation. Reproducibility of this analysis tool was examined by repeating the measurements in the same subject, and individual differences were appreciated from the data acquired in 11 healthy volunteers. Based on the results from these preliminary data sets, this new analysis technique is expected to be an effective tool for macroscopic white matter characterization.
引用
收藏
页码:649 / 657
页数:9
相关论文
共 44 条
  • [1] Spatial transformations of diffusion tensor magnetic resonance images
    Alexander, DC
    Pierpaoli, C
    Basser, PJ
    Gee, JC
    [J]. IEEE TRANSACTIONS ON MEDICAL IMAGING, 2001, 20 (11) : 1131 - 1139
  • [2] Diffusion tensor imaging using single-shot SENSE-EPI
    Bammer, R
    Auer, M
    Keeling, SL
    Augustin, M
    Stables, LA
    Prokesch, RW
    Stollberger, R
    Moseley, ME
    Fazekas, F
    [J]. MAGNETIC RESONANCE IN MEDICINE, 2002, 48 (01) : 128 - 136
  • [3] Basser PJ, 2000, MAGNET RESON MED, V44, P625, DOI 10.1002/1522-2594(200010)44:4<625::AID-MRM17>3.0.CO
  • [4] 2-O
  • [5] MR DIFFUSION TENSOR SPECTROSCOPY AND IMAGING
    BASSER, PJ
    MATTIELLO, J
    LEBIHAN, D
    [J]. BIOPHYSICAL JOURNAL, 1994, 66 (01) : 259 - 267
  • [6] Non-invasive mapping of connections between human thalamus and cortex using diffusion imaging
    Behrens, TEJ
    Johansen-Berg, H
    Woolrich, MW
    Smith, SM
    Wheeler-Kingshott, CAM
    Boulby, PA
    Barker, GJ
    Sillery, EL
    Sheehan, K
    Ciccarelli, O
    Thompson, AJ
    Brady, JM
    Matthews, PM
    [J]. NATURE NEUROSCIENCE, 2003, 6 (07) : 750 - 757
  • [7] Segmenting brain white matter, gray matter and cerebro-spinal fluid using diffusion tensor-MRI derived indices
    Cercignani, M
    Inglese, M
    Siger-Zajdel, M
    Filippi, M
    [J]. MAGNETIC RESONANCE IMAGING, 2001, 19 (09) : 1167 - 1172
  • [8] Automatic 3-D model-based neuroanatomical segmentation
    Collins, DL
    Holmes, CJ
    Peters, TM
    Evans, AC
    [J]. HUMAN BRAIN MAPPING, 1995, 3 (03) : 190 - 208
  • [9] Tracking neuronal fiber pathways in the living human brain
    Conturo, TE
    Lori, NF
    Cull, TS
    Akbudak, E
    Snyder, AZ
    Shimony, JS
    McKinstry, RC
    Burton, H
    Raichle, ME
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1999, 96 (18) : 10422 - 10427
  • [10] Encoding of anisotropic diffusion with tetrahedral gradients: A general mathematical diffusion formalism and experimental results
    Conturo, TE
    McKinstry, RC
    Akbudak, E
    Robinson, BH
    [J]. MAGNETIC RESONANCE IN MEDICINE, 1996, 35 (03) : 399 - 412