An Architectural Model for High Performance Pattern Matching in Linked Historical Data

被引:0
|
作者
Aleithe, Michael [1 ]
Hegerl, Ulrich [2 ]
Ivanova, Galina [1 ,3 ]
机构
[1] Univ Leipzig, Inst Wirtschaftsinformat, Grimma Str 12, D-04109 Leipzig, Germany
[2] Stiftung Deutsch Depress Shilfe, Semmelweisstr 10, D-04103 Leipzig, Germany
[3] Univ Leipzig, Inst Angew Informat InfAI eV, Hainstr 11, D-04109 Leipzig, Germany
来源
BUSINESS INFORMATION SYSTEMS WORKSHOPS, BIS 2016 | 2017年 / 263卷
关键词
Cyber physical systems; Sensor networks; Body area networks; Spatio-temporal sensor graph; Graph databases;
D O I
10.1007/978-3-319-52464-1_29
中图分类号
F [经济];
学科分类号
02 ;
摘要
In times of global digitalization and interconnectedness the virtual Cyber Physical Systems (CPS) are getting more and more on importance. These CPS and their relations among themselves can be investigated using appropriate data acquired by the inherent sensors. The multivariate, multiscale, multimodal sensor data can be modeled and analyzed as a dynamically evolving spatio-temporal complex network. These graphs as well as the patterns estimated in historical data can then be used for real time comparison with momentary computed patterns. Therefore providing linked data from memory is an important need to accomplish real time constraints especially in case of CPS in critical medical systems. Since the handling of graphs in the traditional relational database systems is problematic an encouraging approach is the storage of these data in graph databases which are appropriate for the handling of linked data. Therefore we propose the graph database Neo4J and demonstrate first applications of the approach within medical use-cases.
引用
收藏
页码:323 / 331
页数:9
相关论文
共 50 条
  • [1] Pattern matching in historical data
    Johannesmeyer, MC
    Singhal, A
    Seborg, DE
    AICHE JOURNAL, 2002, 48 (09) : 2022 - 2038
  • [2] Effect of data compression on pattern matching in historical data
    Singhal, A
    Seborg, DE
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2005, 44 (09) : 3203 - 3212
  • [3] Data compression issues with pattern matching in historical data
    Singhal, A
    Seborg, DE
    PROCEEDINGS OF THE 2003 AMERICAN CONTROL CONFERENCE, VOLS 1-6, 2003, : 3696 - 3701
  • [4] Pattern matching in historical batch data using PCA
    Singhal, A
    Seborg, DE
    IEEE CONTROL SYSTEMS MAGAZINE, 2002, 22 (05): : 53 - 63
  • [5] High Performance Pattern Matching on Heterogeneous Platform
    Soroushnia, Shima
    Daneshtalab, Masoud
    Plosila, Juha
    Pahikkala, Tapio
    Liljeberg, Pasi
    JOURNAL OF INTEGRATIVE BIOINFORMATICS, 2014, 11 (03): : 253
  • [6] Matching high performance approximate inverse preconditioning to architectural platforms
    K. M. Giannoutakis
    G. A. Gravvanis
    B. Clayton
    A. Patil
    T. Enright
    J. P. Morrison
    The Journal of Supercomputing, 2007, 42 : 145 - 163
  • [7] Matching high performance approximate inverse preconditioning to architectural platforms
    Giannoutakis, K. M.
    Gravvanis, G. A.
    Clayton, B.
    Patil, A.
    Enright, T.
    Morrison, J. P.
    JOURNAL OF SUPERCOMPUTING, 2007, 42 (02): : 145 - 163
  • [8] High Performance Pattern Matching using the Automata Processor
    Roy, Indranil
    Srivastava, Ankit
    Nourian, Marziyeh
    Becchi, Michela
    Aluru, Srinivas
    2016 IEEE 30TH INTERNATIONAL PARALLEL AND DISTRIBUTED PROCESSING SYMPOSIUM (IPDPS 2016), 2016, : 1123 - 1132
  • [9] Compact state machines for high performance pattern matching
    Piyachon, Piti
    Luo, Yan
    2007 44TH ACM/IEEE DESIGN AUTOMATION CONFERENCE, VOLS 1 AND 2, 2007, : 493 - +
  • [10] High Performance Pattern Matching Algorithm for Network Security
    Wang, Yang
    Kobayashi, Hidetsune
    INTERNATIONAL JOURNAL OF COMPUTER SCIENCE AND NETWORK SECURITY, 2006, 6 (10): : 83 - 87