Global stability of traveling waves for (1+1)-dimensional systems of quasilinear wave equations

被引:2
作者
Cha, Louis Dongbing [1 ]
Shao, Arick [2 ]
机构
[1] Donghua Univ, Dept Math, Shanghai 201620, Peoples R China
[2] Queen Mary Univ London, Sch Math Sci, Mile End Rd, London E1 4NS, England
基金
中国国家自然科学基金; 英国工程与自然科学研究理事会;
关键词
Nonlinear wave equations; traveling wave; global nonlinear stability; CLASSICAL-SOLUTIONS; HYPERBOLIC SYSTEMS; NULL CONDITION; EXISTENCE;
D O I
10.1142/S0219891622500163
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A key feature of (1+1)-dimensional nonlinear wave equations is that they admit left or right traveling waves, under appropriate algebraic conditions on the nonlinearities. In this paper, we prove global stability of such traveling wave solutions for (1+1)-dimensional systems of nonlinear wave equations, given a certain asymptotic null condition and sufficient decay for the traveling wave. We first consider semilinear systems as a simpler model problem; we then proceed to treat more general quasilinear systems.
引用
收藏
页码:549 / 586
页数:38
相关论文
共 34 条