Effect of Temperature on Growth of TiO2 Nanoflowers Photoanode for Dye-Sensitized Solar Cells

被引:2
作者
Ma, Jing [1 ]
Ren, Weihua [1 ]
Yang, Hailian [1 ]
Liu, Wenxiu [2 ]
Lu, Yi [3 ]
机构
[1] Taiyuan Univ Technol, Sch Mat Sci & Engn, Taiyuan 030024, Shanxi, Peoples R China
[2] Univ Sci & Technol Beijing, Sch Chem & Biol Engn, Beijing 100083, Peoples R China
[3] 306 Hosp PLA, Beijing 100101, Peoples R China
关键词
TiO2; Nanoflowers; Hydrothermal Process; Dye-Sensitized Solar Cells; Photoanode; NANOTUBE ARRAYS; RUTILE TIO2; LOW-COST; EFFICIENCY; ELECTRODE; PERFORMANCE; NANORODS;
D O I
10.1166/jnn.2018.15562
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
A one-step hydrothermal process for TiO2 nanoflowers directly grew on fluorine drop tin oxide (FTO) glass substrates were investigated in this study. Under the limited condition of 1.5 ml of titanium precursor, set different reaction temperature to 150 degrees C, 165 degrees C, and 180 degrees C, it was found that with the increasing reaction temperature, the thickness of TiO2 nanoflowers increased gradually, but the surface of TiO2 nanoflowers film become compact and then went disrupt. Employ these TiO2 nanoflowers as the photoanode of dye-sensitized solar cells (DSSCs), the best device with TiO2 nanoflowers processed at 165 degrees C performed with a Photovoltaic Conversion Efficiency (PCE) of 2.83%. Appropriate film thickness and TiO2 nanoflower clusters at 165 degrees C brings these TiO2 nanoflowers large dye loading, high light harvesting ability and enough electron path, an exorbitant reaction temperature may cause high interface resistance of TiO2 nanoflowers, and damage the performance of DSSCs.
引用
收藏
页码:7969 / 7973
页数:5
相关论文
共 24 条
[1]  
Barbe CJ, 1997, J AM CERAM SOC, V80, P3157, DOI 10.1111/j.1151-2916.1997.tb03245.x
[2]   TiO2(B) Nanoribbons As Negative Electrode Material for Lithium Ion Batteries with High Rate Performance [J].
Beuvier, Thomas ;
Richard-Plouet, Mireille ;
Mancini-Le Granvalet, Maryline ;
Brousse, Thierry ;
Crosnier, Olivier ;
Brohan, Luc .
INORGANIC CHEMISTRY, 2010, 49 (18) :8457-8464
[3]   Mesoporous Anatase TiO2 Beads with High Surface Areas and Controllable Pore Sizes: A Superior Candidate for High-Performance Dye-Sensitized Solar Cells [J].
Chen, Dehong ;
Huang, Fuzhi ;
Cheng, Yi-Bing ;
Caruso, Rachel A. .
ADVANCED MATERIALS, 2009, 21 (21) :2206-+
[4]   Efficient and stable large-area perovskite solar cells with inorganic charge extraction layers [J].
Chen, Wei ;
Wu, Yongzhen ;
Yue, Youfeng ;
Liu, Jian ;
Zhang, Wenjun ;
Yang, Xudong ;
Chen, Han ;
Bi, Enbing ;
Ashraful, Islam ;
Graetzel, Michael ;
Han, Liyuan .
SCIENCE, 2015, 350 (6263) :944-948
[5]   Application of TiO2 Fusiform Nanorods for Dye-Sensitized Solar Cells with Significantly Improved Efficiency [J].
Fan, Ke ;
Zhang, Wei ;
Peng, Tianyou ;
Chen, Junnian ;
Yang, Fan .
JOURNAL OF PHYSICAL CHEMISTRY C, 2011, 115 (34) :17213-17219
[6]   Improvement of adhesion of Pt-free counter electrodes for low-cost dye-sensitized solar cells [J].
Gao, Yurong ;
Chu, Lingling ;
Wu, Mingxing ;
Wang, Linlin ;
Guo, Wei ;
Ma, Tingli .
JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY A-CHEMISTRY, 2012, 245 :66-71
[7]   Diffusion in the electrolyte and charge-transfer reaction at the platinum electrode in dye-sensitized solar cells [J].
Hauch, A ;
Georg, A .
ELECTROCHIMICA ACTA, 2001, 46 (22) :3457-3466
[8]   Vertically Aligned TiO2 Nanorod Arrays as a Steady Light Sensor [J].
He, Xiaoshan ;
Hu, Chenguo ;
Feng, Bin ;
Wan, Buyong ;
Tian, Yongshu .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2010, 157 (11) :J381-J385
[9]   Dye-sensitized solar cells based on a single-crystalline TiO2 nanorod film [J].
Jiu, JT ;
Isoda, S ;
Wang, FM ;
Adachi, M .
JOURNAL OF PHYSICAL CHEMISTRY B, 2006, 110 (05) :2087-2092
[10]   Growth of TiO2 nanoflowers photoanode for dye-sensitized solar cells [J].
Ma, Jing ;
Ren, Weihua ;
Zhao, Jing ;
Yang, Hailian .
JOURNAL OF ALLOYS AND COMPOUNDS, 2017, 692 :1004-1009