The work mechanism and sub-bandgap-voltage electroluminescence in inverted quantum dot light-emitting diodes

被引:76
作者
Ji, Wenyu [1 ]
Jing, Pengtao [1 ]
Zhang, Ligong [1 ]
Li, Di [1 ]
Zeng, Qinghui [1 ]
Qu, Songnan [1 ]
Zhao, Jialong [2 ]
机构
[1] Chinese Acad Sci, Changchun Inst Opt Fine Mech & Phys, State Key Lab Luminescence & Applicat, Changchun 130033, Peoples R China
[2] Jilin Normal Univ, Key Lab Funct Mat Phys & Chem, Minist Educ, Siping 136000, Peoples R China
基金
中国国家自然科学基金;
关键词
EFFICIENT; DEVICES; NANOCRYSTALS; GREEN; 100-PERCENT; ELECTRON; BRIGHT;
D O I
10.1038/srep06974
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Through introducing a probe layer of bis(4,6-difluorophenylpyridinato-N, C2) picolinatoiridium (FIrpic) between QD emission layer and 4, 4-N, N-dicarbazole-biphenyl (CBP) hole transport layer, we successfully demonstrate that the electroluminescence (EL) mechanism of the inverted quantum dot light-emitting diodes (QD-LEDs) with a ZnO nanoparticle electron injection/transport layer should be direct charge-injection from charge transport layers into the QDs. Further, the EL from QD-LEDs at sub-bandgap drive voltages is achieved, which is in contrast to the general device in which the turn-on voltage is generally equal to or greater than its bandgap voltage (the bandgap energy divided by the electron charge). This sub-bandgap EL is attributed to the Auger-assisted energy up-conversion hole-injection process at the QDs/organic interface. The high energy holes induced by Auger-assisted processes can be injected into the QDs at sub-bandgap applied voltages. These results are of important significance to deeply understand the EL mechanism in QD-LEDs and to further improve device performance.
引用
收藏
页数:6
相关论文
共 28 条
[1]   Controlling the influence of Auger recombination on the performance of quantum-dot light-emitting diodes [J].
Bae, Wan Ki ;
Park, Young-Shin ;
Lim, Jaehoon ;
Lee, Donggu ;
Padilha, Lazaro A. ;
McDaniel, Hunter ;
Robel, Istvan ;
Lee, Changhee ;
Pietryga, Jeffrey M. ;
Klimov, Victor I. .
NATURE COMMUNICATIONS, 2013, 4
[2]   Highly Efficient Green-Light-Emitting Diodes Based on CdSe@ZnS Quantum Dots with a Chemical-Composition Gradient [J].
Bae, Wan Ki ;
Kwak, Jeonghun ;
Park, Ji Won ;
Char, Kookheon ;
Lee, Changhee ;
Lee, Seonghoon .
ADVANCED MATERIALS, 2009, 21 (17) :1690-+
[4]   Hybrid light-emitting devices based on phosphorescent platinum(II) complex sensitized CdSe/ZnS quantum dots [J].
Cheng, Gang ;
Lu, Wei ;
Chen, Yong ;
Che, Chi-Ming .
OPTICS LETTERS, 2012, 37 (06) :1109-1111
[5]  
COLVIN VL, 1994, NATURE, V370, P354, DOI 10.1038/370354a0
[6]   ELECTROLUMINESCENCE FROM CDSE QUANTUM-DOT POLYMER COMPOSITES [J].
DABBOUSI, BO ;
BAWENDI, MG ;
ONITSUKA, O ;
RUBNER, MF .
APPLIED PHYSICS LETTERS, 1995, 66 (11) :1316-1318
[7]   Materials interface engineering for solution-processed photovoltaics [J].
Graetzel, Michael ;
Janssen, Rene A. J. ;
Mitzi, David B. ;
Sargent, Edward H. .
NATURE, 2012, 488 (7411) :304-312
[8]   White-Light-Emitting Diodes with Quantum Dot Color Converters for Display Backlights [J].
Jang, Eunjoo ;
Jun, Shinae ;
Jang, Hyosook ;
Llim, Jungeun ;
Kim, Byungki ;
Kim, Younghwan .
ADVANCED MATERIALS, 2010, 22 (28) :3076-3080
[9]  
Ji W. Y., 2024, ACS APPL MAT INTERFA, V6, P14001
[10]   Top-emitting white organic light-emitting devices with down-conversion phosphors: Theory and experiment [J].
Ji, Wenyu ;
Zhang, Letian ;
Gao, Ruixue ;
Zhang, Liming ;
Xie, Wenfa ;
Zhang, Hanzhuang ;
Li, Bin .
OPTICS EXPRESS, 2008, 16 (20) :15489-15494