Evolving the mapping between input neurons and multi-source imagery

被引:0
作者
Harvey, PRW [1 ]
Booth, DM [1 ]
Boyce, JF [1 ]
机构
[1] DSTL Malvern, Malvern WR14 3PS, Worcs, England
来源
CEC'02: PROCEEDINGS OF THE 2002 CONGRESS ON EVOLUTIONARY COMPUTATION, VOLS 1 AND 2 | 2002年
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We present a mutable input field concept that allows a neural network to evolve a mapping between its input layer and a 3-dimensional 'input cube' consisting of a local window applied within multiple imagery sources, such as hyperspectral bands, feature maps, or even encoded tactical information regarding likely object location and class. This allows the net to exploit salient regions (both within and across sources) of what may otherwise be an unwieldy input domain. Small recurrent neural networks are evolved to perform object detection within airborne reconnaissance imagery that has been processed to provide 3 colour bands and 2 feature maps including one designed to identify man-made structures based on perpendicularity of edge direction. A variable input field is shown to provide faster convergence and superior detector fitness over a number of trials than a set of alternative fixed input field mappings.
引用
收藏
页码:1878 / 1883
页数:6
相关论文
共 50 条
  • [41] Analysis and Control of an Isolated Multi-Source Renewable Microgrid Employing the Multi-Input Split-Source Inverter
    Cocco, Gabriel M.
    Bisogno, Fabio E.
    de Camargo, Robinson E.
    Woldu, Tahaguas A.
    Ziegler, Christian
    Wolter, Martin
    2023 IEEE POWER & ENERGY SOCIETY GENERAL MEETING, PESGM, 2023,
  • [42] Multi-source global wetland maps combining surface water imagery and groundwater constraints
    Tootchi, Ardalan
    Jost, Anne
    Ducharne, Agnes
    EARTH SYSTEM SCIENCE DATA, 2019, 11 (01) : 189 - 220
  • [43] Linear features for semi-automatic registration and change detection of multi-source imagery
    Habib, AF
    Kim, CJ
    Kim, EM
    IGARSS 2005: IEEE International Geoscience and Remote Sensing Symposium, Vols 1-8, Proceedings, 2005, : 2117 - 2120
  • [44] Multi-source inputs converge on the superior salivatory nucleus neurons in anaesthetized rats
    Ishizuka, Ken'Ichi
    Oskutyte, Diana
    Satoh, Yoshihide
    Murakami, Toshiki
    AUTONOMIC NEUROSCIENCE-BASIC & CLINICAL, 2010, 156 (1-2): : 104 - 110
  • [45] Semi-automatic registration of, multi-source satellite imagery with varying geometric resolutions
    Habib, A
    Al-Ruzouq, R
    PHOTOGRAMMETRIC ENGINEERING AND REMOTE SENSING, 2005, 71 (03) : 325 - 332
  • [46] Marine Floating Raft Aquaculture Dynamic Monitoring Based on Multi-source GF Imagery
    Fan, Jianchao
    Zhao, Jianhua
    Song, Derui
    Wang, Xinxin
    Wang, Xiang
    Su, Xiu
    2018 7TH INTERNATIONAL CONFERENCE ON AGRO-GEOINFORMATICS (AGRO-GEOINFORMATICS), 2018, : 37 - 40
  • [47] Source mapping analysis, a multi-source method for the interpretation and analysis of magnetic Barkhausen noise signals
    Perez-Benitez, J. A.
    Espina-Hernandez, J. H.
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2013, 24 (01)
  • [48] Wetlands mapping in typical regions of South America with multi-source and multi-feature integration
    Huang Y.
    Yang G.
    Sun W.
    Zhu L.
    Huang K.
    Meng X.
    National Remote Sensing Bulletin, 2023, 27 (06) : 6 - 25
  • [49] Susceptibility evaluation and mapping of China’s landslides based on multi-source data
    Chun Liu
    Weiyue Li
    Hangbin Wu
    Ping Lu
    Kai Sang
    Weiwei Sun
    Wen Chen
    Yang Hong
    Rongxing Li
    Natural Hazards, 2013, 69 : 1477 - 1495
  • [50] Multi-Source and multi-Scale Imaging-Data Integration to boost Mineral Mapping
    Gloaguen, Richard
    Fuchs, Margret
    Khodadadzadeh, Mahdi
    Ghamisi, Pedram
    Kirsch, Moritz
    Booysen, Rene
    Zimmermann, Robert
    Lorenz, Sandra
    2019 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2019), 2019, : 5587 - 5589