Isoperimetric profiles and random walks on some groups defined by piecewise actions

被引:0
作者
Saloff-Coste, Laurent [1 ]
Zheng, Tianyi [2 ]
机构
[1] Cornell Univ, Dept Math, White Hall, Ithaca, NY 14853 USA
[2] Univ Calif San Diego, Dept Math, San Diego, CA 92103 USA
关键词
AMENABILITY; SPEED; PERMUTATION; ENTROPY; GROWTH;
D O I
10.1007/s00440-021-01067-z
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We study the isoperimetric and spectral profiles of certain families of finitely generated groups defined via actions on labelled Schreier graphs and simple gluing of such. In one of our simplest constructions-the pocket-extension of a group G-this leads to the study of certain finitely generated subgroups of the full permutation group S(G boolean OR{*}). Some sharp estimates are obtained while many challenging questions remain.
引用
收藏
页码:711 / 756
页数:46
相关论文
共 40 条
  • [1] Amir G, 2016, ARXIV160507593
  • [3] The Liouville property for groups acting on rooted trees
    Amir, Gideon
    Angel, Omer
    Bon, Nicolas Matte
    Virag, Balint
    [J]. ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2016, 52 (04): : 1763 - 1783
  • [4] Positive speed for high-degree automaton groups
    Amir, Gideon
    Virag, Balint
    [J]. GROUPS GEOMETRY AND DYNAMICS, 2014, 8 (01) : 23 - 38
  • [5] Amenability of linear-activity automaton groups
    Amir, Gideon
    Angel, Omer
    Virag, Balint
    [J]. JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2013, 15 (03) : 705 - 730
  • [6] [Anonymous], 2000, COLLOQ MATH-WARSAW
  • [7] Amenability via random walks
    Bartholdi, L
    Virág, B
    [J]. DUKE MATHEMATICAL JOURNAL, 2005, 130 (01) : 39 - 56
  • [8] Poisson-Furstenberg boundary and growth of groups
    Bartholdi, Laurent
    Erschler, Anna
    [J]. PROBABILITY THEORY AND RELATED FIELDS, 2017, 168 (1-2) : 347 - 372
  • [9] AMENABILITY OF AUTOMATA GROUPS
    Bartholdi, Laurent
    Kaimanovich, Vadim A.
    Nekrashevych, Volodymyr V.
    [J]. DUKE MATHEMATICAL JOURNAL, 2010, 154 (03) : 575 - 598
  • [10] LIMIT THEOREMS FOR NON-COMMUTATIVE OPERATIONS .1.
    BELLMAN, R
    [J]. DUKE MATHEMATICAL JOURNAL, 1954, 21 (03) : 491 - 500