On the generalized Einstein-Cartan action with fermions

被引:2
作者
Lagraa, Meriem-Hadjer [1 ]
Lagraa, Mohammed [1 ]
机构
[1] Univ Oran, Lab Phys Theor Oran, Es Senia 31100, Algeria
关键词
REAL;
D O I
10.1088/0264-9381/27/9/095012
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
From the freedom exhibited by the generalized Einstein action proposed in Dubois-Violette and Lagraa (2010 Lett. Math. Phys. 91 83-91), we show that we can construct the standard effective Einstein-Cartan action coupled to the fermionic matter without the usual current-current interaction and therefore an effective action which does not depend either on the Immirzi parameter or on the torsion. This establishes the equivalence between the Einstein-Cartan theory and the theory of general relativity minimally coupled to the fermionic matter.
引用
收藏
页数:8
相关论文
共 22 条
[1]   The Immirzi parameter and fermions with non-minimal coupling [J].
Alexandrov, Sergei .
CLASSICAL AND QUANTUM GRAVITY, 2008, 25 (14)
[2]   Background independent quantum giravity: a status report [J].
Ashtekar, A ;
Lewandowski, J .
CLASSICAL AND QUANTUM GRAVITY, 2004, 21 (15) :R53-R152
[3]   REAL ASHTEKAR VARIABLES FOR LORENTZIAN SIGNATURE SPACE-TIMES [J].
BARBERO, JF .
PHYSICAL REVIEW D, 1995, 51 (10) :5507-5510
[4]   Fermions in loop quantum cosmology and the role of parity [J].
Bojowald, Martin ;
Das, Rupam .
CLASSICAL AND QUANTUM GRAVITY, 2008, 25 (19)
[5]   Topological interpretation of Barbero-Immirzi parameter [J].
Date, Ghanashyam ;
Kaul, Romesh K. ;
Sengupta, Sandipan .
PHYSICAL REVIEW D, 2009, 79 (04)
[6]   Abundance of Local Actions for the Vacuum Einstein Equations [J].
Dubois-Violette, Michel ;
Lagraa, Mohamed .
LETTERS IN MATHEMATICAL PHYSICS, 2010, 91 (01) :83-91
[7]   Quantum gravity, torsion, parity violation, and all that [J].
Freidel, L ;
Minic, D ;
Takeuchi, T .
PHYSICAL REVIEW D, 2005, 72 (10)
[8]  
GALCAGNI G, 2009, PHYS REV D, V79
[9]   Yang-Mills analogues of the Immirzi ambiguity -: art. no. 047505 [J].
Gambini, R ;
Obregón, O ;
Pullin, J .
PHYSICAL REVIEW D, 1999, 59 (04)
[10]   Barbero's Hamiltonian derived from a generalized Hilbert-Palatini action [J].
Holst, S .
PHYSICAL REVIEW D, 1996, 53 (10) :5966-5969