Optical interferometry-based array of seafloor environmental sensors using a transoceanic submarine cable

被引:74
作者
Marra, G. [1 ]
Fairweather, D. M. [2 ]
Kamalov, V [3 ]
Gaynor, P. [1 ]
Cantono, M. [3 ]
Mulholland, S. [1 ]
Baptie, B. [4 ]
Castellanos, J. C. [3 ]
Vagenas, G. [1 ]
Gaudron, J-O [1 ]
Kronjager, J. [1 ]
Hill, I. R. [1 ]
Schioppo, M. [1 ]
Edreira, I. Barbeito [1 ]
Burrows, K. A. [1 ]
Clivati, C. [5 ]
Calonico, D. [5 ]
Curtis, A. [2 ]
机构
[1] Natl Phys Lab NPL, Teddington, Middx, England
[2] Univ Edinburgh, Sch GeoSci, Edinburgh, Midlothian, Scotland
[3] Google LLC, Mountain View, CA USA
[4] British Geol Survey, Edinburgh, Midlothian, Scotland
[5] Ist Nazl Ric Metrol INRIM, Turin, Italy
基金
英国工程与自然科学研究理事会; 英国自然环境研究理事会;
关键词
FAULTS;
D O I
10.1126/science.abo1939
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Optical fiber-based sensing technology can drastically improve Earth observations by enabling the use of existing submarine communication cables as seafloor sensors. Previous interferometric and polarizationbased techniques demonstrated environmental sensing over cable lengths up to 10,500 kilometers. However, measurements were limited to the integrated changes over the entire length of the cable. We demonstrate the detection of earthquakes and ocean signals on individual spans between repeaters of a 5860-kilometer-long transatlantic cable rather than the whole cable. By applying this technique to the existing undersea communication cables, which have a repeater-to-repeater span length of 45 to 90 kilometers, the largely unmonitored ocean floor could be instrumented with thousands of permanent real-time environmental sensors without changes to the underwater infrastructure.
引用
收藏
页码:874 / +
页数:31
相关论文
共 30 条
  • [1] Bergano N. S., 2016, UNDERSEA FIBER COMMU, V2, P427
  • [2] Bernard E., 2010, ESA PUBLICATION, V1, P58
  • [3] Absolute Centroid Location of Submarine Earthquakes from 3D Waveform Modeling of Water Reverberations
    Castellanos, Jorge C.
    Zhan, Zhongwen
    Wu, Wenbo
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH, 2020, 125 (05)
  • [4] Seismic observations of sea swell on the floating Ross Ice Shelf, Antarctica
    Cathles, L. M.
    Okal, Emile A.
    MacAyeal, Douglas R.
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-EARTH SURFACE, 2009, 114
  • [5] On the seasonal variations of ocean bottom pressure in the world oceans
    Cheng, Xuhua
    Ou, Niansen
    Chen, Jiajia
    Huang, Rui Xin
    [J]. GEOSCIENCE LETTERS, 2021, 8 (01)
  • [6] Distributed Optical Fiber Sensors Based on Optical Frequency Domain Reflectometry: A review
    Ding, Zhenyang
    Wang, Chenhuan
    Liu, Kun
    Jiang, Junfeng
    Yang, Di
    Pan, Guanyi
    Pu, Zelin
    Liu, Tiegen
    [J]. SENSORS, 2018, 18 (04)
  • [7] DETERMINATION OF EARTHQUAKE SOURCE PARAMETERS FROM WAVEFORM DATA FOR STUDIES OF GLOBAL AND REGIONAL SEISMICITY
    DZIEWONSKI, AM
    CHOU, TA
    WOODHOUSE, JH
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH, 1981, 86 (NB4): : 2825 - 2852
  • [8] The Role of Oceanic Transform Faults in Seafloor Spreading: A Global Perspective From Seismic Anisotropy
    Eakin, Caroline M.
    Rychert, Catherine A.
    Harmon, Nicholas
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH, 2018, 123 (02) : 1736 - 1751
  • [9] OPTICAL FREQUENCY-DOMAIN REFLECTOMETRY IN SINGLE-MODE FIBER
    EICKHOFF, W
    ULRICH, R
    [J]. APPLIED PHYSICS LETTERS, 1981, 39 (09) : 693 - 695
  • [10] The global CMT project 2004-2010: Centroid-moment tensors for 13,017 earthquakes
    Ekstroem, G.
    Nettles, M.
    Dziewonski, A. M.
    [J]. PHYSICS OF THE EARTH AND PLANETARY INTERIORS, 2012, 200 : 1 - 9