Automatic image classification for the urinoculture screening

被引:18
作者
Andreini, Paolo [1 ]
Bonechi, Simone [1 ]
Bianchini, Monica [1 ]
Garzelli, Andrea [1 ]
Mecocci, Alessandro [1 ]
机构
[1] Univ Siena, Dept Informat Engn & Math, Via Roma 56, I-53100 Siena, Italy
关键词
Color image processing; Clustering techniques; Artificial neural networks; Support vector machines; Urinoculture screening; ALGORITHMS; COLONIES;
D O I
10.1016/j.compbiomed.2015.12.025
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Urinary tract infections (UTIs) are considered to be the most common bacterial infection and, actually, it is estimated that about 150 million UTIs occur world wide yearly, giving rise to roughly $6 billion in healthcare expenditures and resulting in 100,000 hospitalizations. Nevertheless, it is difficult to carefully assess the incidence of UTIs, since an accurate diagnosis depends both on the presence of symptoms and on a positive urinoculture, whereas,in most outpatient settings this diagnosis is made without an ad hoc analysis protocol. On the other hand, in the traditional urinoculture test, a sample of midstream urine is put onto a Petri dish, where a growth medium favors the proliferation of germ colonies. Then, the infection severity is evaluated by a visual inspection of a human expert, an error prone and lengthy process. In this paper, we propose a fully automated system for the urinoculture screening that can provide quick and easily traceable results for UTIs. Based on advanced image processing and machine learning tools, the infection type recognition, together with the estimation of the bacterial load, can be automatically carried out, yielding accurate diagnoses. The proposed AID (Automatic Infection Detector) system provides support during the whole analysis process: first, digital color images of Petri dishes are automatically captured, then specific preprocessing and spatial clustering algorithms are applied to isolate the colonies from the culture ground and, finally, an accurate classification of the infections and their severity evaluation are performed. The AID system speeds up the analysis, contributes to the standardization of the process, allows result repeatability, and reduces the costs. Moreover, the continuous transition between sterile and external environments (typical of the standard analysis procedure) is completely avoided. (C) 2016 Elsevier Ltd. All rights reserved.
引用
收藏
页码:12 / 22
页数:11
相关论文
共 35 条
[1]  
Agah A., 2014, ARTIFICIAL INTELLIGE
[2]   Automatic Image Classification for the Urinoculture Screening [J].
Andreini, Paolo ;
Bonechi, Simone ;
Bianchini, Monica ;
Mecocci, Alessandro ;
Di Massa, Vincenzo .
INTELLIGENT DECISION TECHNOLOGIES, 2015, 39 :31-42
[3]  
[Anonymous], 1988, Parallel distributed processing
[4]  
[Anonymous], 1978, ACM SIGGRAPH COMPUT, DOI [10.1145/965139.807361, DOI 10.1145/965139.807361]
[5]  
Automated Urine Screening Systems, 2011, 10031 CEP NHS PURCH
[6]  
Ballabio C., 2010, MICROBIOL MED, V5, P178
[7]  
Bandinelli N., 2012, 2012 P IJCNNWCCI, P1
[8]   Data Analysis and Data Mining: Current Issues in Biomedical Informatics [J].
Bellazzi, R. ;
Diomidous, M. ;
Sarkar, I. N. ;
Takabayashi, K. ;
Ziegler, A. ;
McCray, A. T. .
METHODS OF INFORMATION IN MEDICINE, 2011, 50 (06) :536-544
[9]   A taxonomic description of computer-based clinical decision support systems [J].
Berlin, Amy ;
Sorani, Marco ;
Sim, Ida .
JOURNAL OF BIOMEDICAL INFORMATICS, 2006, 39 (06) :656-667
[10]  
Bianchini M., 2013, HDB NEURAL INFORM PR, V49