Batch to Real-Time: Incremental Data Collection & Analytics Platform

被引:0
|
作者
Aydin, Ahmet Arif [1 ]
Anderson, Kenneth M. [1 ]
机构
[1] Univ Colorado, Boulder, CO 80309 USA
来源
PROCEEDINGS OF THE 50TH ANNUAL HAWAII INTERNATIONAL CONFERENCE ON SYSTEM SCIENCES | 2017年
关键词
SOFTWARE ARCHITECTURE;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Real-time data collection and analytics is a desirable but challenging feature to provide in data-intensive software systems. To provide highly concurrent and efficient real-time analytics on streaming data at interactive speeds requires a well-designed software architecture that makes use of a carefully selected set of software frameworks. In this paper, we report on the design and implementation of the Incremental Data Collection & Analytics Platform (IDCAP). The IDCAP provides incremental data collection and indexing in real-time of social media data; support for real-time analytics at interactive speeds; highly concurrent batch data processing supported by a novel data model; and a front-end web client that allows an analyst to manage IDCAP resources, to monitor incoming data in real-time, and to provide an interface that allows incremental queries to be performed on top of large Twitter datasets.
引用
收藏
页码:5911 / 5920
页数:10
相关论文
共 50 条
  • [1] Real-Time Cyber Analytics Data Collection Framework
    Maosa, Herbert
    Ouazzane, Karim
    Sowinski-Mydlarz, Viktor
    INTERNATIONAL JOURNAL OF INFORMATION SECURITY AND PRIVACY, 2022, 16 (01)
  • [2] An incremental approach for real-time Big Data visual analytics
    Garcia, Ignacio
    Casado, Ruben
    Bouchachia, Abdelhamid
    2016 IEEE 4TH INTERNATIONAL CONFERENCE ON FUTURE INTERNET OF THINGS AND CLOUD WORKSHOPS (FICLOUDW), 2016, : 177 - 182
  • [3] A Serverless Real-Time Data Analytics Platform for Edge Computing
    Nastic, Stefan
    Rausch, Thomas
    Scekic, Ognjen
    Dustdar, Schahram
    Gusev, Marjan
    Koteska, Bojana
    Kostoska, Magdalena
    Jakimovski, Boro
    Ristov, Sasko
    Prodan, Radu
    IEEE INTERNET COMPUTING, 2017, 21 (04) : 64 - 71
  • [4] RAPID: Real-time Analytics Platform for Interactive Data Mining
    Lim, Kwan Hui
    Jayasekara, Sachini
    Karunasekera, Shanika
    Harwood, Aaron
    Falzon, Lucia
    Dunn, John
    Burgess, Glenn
    MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES, ECML PKDD 2018, PT III, 2019, 11053 : 649 - 653
  • [5] Real-time Data Dissemination and Analytics Platform for Challenging IoT Environments
    Daneels, Glenn
    Municio, Esteban
    Spaey, Kathleen
    Vandewiele, Gilles
    Dejonghe, Alexander
    Ongenae, Femke
    Latre, Steven
    Famaey, Jeroen
    2017 GLOBAL INFORMATION INFRASTRUCTURE AND NETWORKING SYMPOSIUM (GIIS), 2017, : 23 - 30
  • [6] A mobile application to support collection and analytics of real-time critical care data
    Vankipuram, Akshay
    Vankipuram, Mithra
    Ghaemmaghami, Vafa
    Patel, Vimla L.
    COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2017, 151 : 45 - 55
  • [7] GPGPU for Real-Time Data Analytics
    He, Bingsheng
    Huynh Phung Huynh
    Mong, Rick Goh Siow
    PROCEEDINGS OF THE 2012 IEEE 18TH INTERNATIONAL CONFERENCE ON PARALLEL AND DISTRIBUTED SYSTEMS (ICPADS 2012), 2012, : 945 - +
  • [8] HBelt: Integrating an Incremental ETL Pipeline with a Big Data Store for Real-Time Analytics
    Qu, Weiping
    Shankar, Sahana
    Ganza, Sandy
    Dessloch, Stefan
    ADVANCES IN DATABASES AND INFORMATION SYSTEMS, ADBIS 2015, 2015, 9282 : 123 - 137
  • [9] A Scalable Platform for Low-Latency Real-Time Analytics of Streaming Data
    Cappellari, Paolo
    Roantree, Mark
    Chun, Soon Ae
    DATA MANAGEMENT TECHNOLOGIES AND APPLICATIONS, 2017, 737 : 1 - 24
  • [10] Platform for Automated Real-Time High Performance Analytics on Medical Image Data
    Allen, William J.
    Gabr, Refaat E.
    Tefera, Getaneh B.
    Pednekar, Amol S.
    Vaughn, Matthew W.
    Narayana, Ponnada A.
    IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2018, 22 (02) : 318 - 324