On the Lagrangian and Hamiltonian description of the damped linear harmonic oscillator

被引:52
作者
Chandrasekar, V. K. [1 ]
Senthilvelan, M. [1 ]
Lakshmanan, M. [1 ]
机构
[1] Bharathidasan Univ, Dept Phys, Ctr Nonlinear Dynam, Tiruchirappalli 620024, India
关键词
D O I
10.1063/1.2711375
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Using the modified Prelle-Singer approach, we point out that explicit time independent first integrals can be identified for the damped linear harmonic oscillator in different parameter regimes. Using these constants of motion, an appropriate Lagrangian and Hamiltonian formalism is developed and the resultant canonical equations are shown to lead to the standard dynamical description. Suitable canonical transformations to standard Hamiltonian forms are also obtained. It is also shown that a possible quantum mechanical description can be developed either in the coordinate or momentum representations using the Hamiltonian forms.
引用
收藏
页数:12
相关论文
共 28 条
[1]  
Abramowitz M., 1972, HDB MATH FUNCTIONS F
[2]   Dissipation and quantization [J].
Blasone, M ;
Jizba, P ;
Vitiello, G .
PHYSICS LETTERS A, 2001, 287 (3-4) :205-210
[3]   On the complete integrability and linearization of nonlinear ordinary differential equations. II. Third-order equations [J].
Chandrasekar, V. K. ;
Senthilvelan, M. ;
Lakshmanan, M. .
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2006, 462 (2070) :1831-1852
[4]   Unusual lienard-type nonlinear oscillator [J].
Chandrasekar, VK ;
Senthilvelan, M ;
Lakshmanan, M .
PHYSICAL REVIEW E, 2005, 72 (06)
[5]   A simple and unified approach to identify integrable nonlinear oscillators and systems [J].
Chandrasekar, VK ;
Pandey, SN ;
Senthilvelan, M ;
Lakshmanan, M .
JOURNAL OF MATHEMATICAL PHYSICS, 2006, 47 (02)
[6]   On the complete integrability and linearization of certain second-order nonlinear ordinary differential equations [J].
Chandrasekar, VK ;
Senthilvelan, M ;
Lakshmanan, M .
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2005, 461 (2060) :2451-2476
[7]   Approach to the quantum evolution for underdamped, critically damped, and overdamped driven harmonic oscillators using unitary transformation [J].
Choi, JR .
REPORTS ON MATHEMATICAL PHYSICS, 2003, 52 (03) :321-329
[8]   Quantum damped oscillator I: Dissipation and resonances [J].
Chruscinski, D ;
Jurkowski, J .
ANNALS OF PHYSICS, 2006, 321 (04) :854-874
[9]   Quantum damped oscillator II: Bateman's Hamiltonian vs. 2D parabolic potential barrier [J].
Chruscinski, D .
ANNALS OF PHYSICS, 2006, 321 (04) :840-853
[10]   Quantum mechanics of damped systems [J].
Chruscinski, D .
JOURNAL OF MATHEMATICAL PHYSICS, 2003, 44 (09) :3718-3733