Glycosaminoglycan destabilization of DNA-chitosan polyplexes for gene delivery depends on chitosan chain length and GAG properties

被引:67
作者
Danielsen, S
Strand, S
Davies, CD
Stokke, BT
机构
[1] Norwegian Univ Sci & Technol, Dept Phys, NO-7491 Trondheim, Norway
[2] Norwegian Univ Sci & Technol, Dept Biotechnol, NOBIPOL, NO-7491 Trondheim, Norway
来源
BIOCHIMICA ET BIOPHYSICA ACTA-GENERAL SUBJECTS | 2005年 / 1721卷 / 1-3期
关键词
chitosan; DNA; polyplex; stability; AFM; fluorescence;
D O I
10.1016/j.bbagen.2004.10.011
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Chitosan-based gene delivery systems are promising candidates for non-viral gene therapy. A wide range of chitosans has been studied to optimize the properties of the DNA-chitosan complexes to yield high transfection efficiencies. An important parameter to control is the polyplex stability to allow transport towards the cells, subsequent internalization and release of DNA intracellularly. The stability of the DNA-chitosan complexes was here studied after exposure to heparin and hyaluronic acid (HA) using atomic force microscopy (AFM) and ethidium bromide (EtBr) fluorescence assay. To study the effect of polycation chain length on the polyplex stability, chitosans with a degree of polymerization (DP) varying from similar to10 to similar to1000 were employed for DNA compaction. Whereas HA was unable to dissociate the complexes, the degree of dissociation caused by heparin depended on both the chitosan chain length and the amount of chitosan used for complexation. When increasing the chitosan concentration, larger heparin concentrations were required for polyplex dissociation. Furthermore, increasing the chitosan chain length yielded more stable complexes. Varying the chitosan chain length thus provides a tool for controlling the ability of the polyplex to deliver therapeutic gene vectors to cells. (C) 2004 Elsevier B.V. All rights reserved.
引用
收藏
页码:44 / 54
页数:11
相关论文
共 44 条
[1]  
APPS DK, 1992, BIOCHEMISTRY-US, P343
[2]  
ATKINS EDT, 1979, APPLIED FIBRE SCI, V3, P311
[3]   POTENTIAL ANTI-TUMOR AGENTS .28. DEOXYRIBONUCLEIC-ACID POLYINTERCALATING AGENTS [J].
CAIN, BF ;
BAGULEY, BC ;
DENNY, WA .
JOURNAL OF MEDICINAL CHEMISTRY, 1978, 21 (07) :658-668
[4]   Structural analysis of chitosan mediated DNA condensation by AFM:: Influence of chitosan molecular parameters [J].
Danielsen, S ;
Vårum, KM ;
Stokke, BT .
BIOMACROMOLECULES, 2004, 5 (03) :928-936
[5]  
DANIELSEN S, 2004, IN PRESS BIOPOLYMERS
[6]   Synthetic polymers for vectorial delivery of DNA: characterisation of polymer-DNA complexes by photon correlation spectroscopy and stability to nuclease degradation and disruption by polyanions in vitro [J].
Dash, PR ;
Toncheva, V ;
Schacht, E ;
Seymour, LW .
JOURNAL OF CONTROLLED RELEASE, 1997, 48 (2-3) :269-276
[7]   Cationic polymer based gene delivery systems [J].
De Smedt, SC ;
Demeester, J ;
Hennink, WE .
PHARMACEUTICAL RESEARCH, 2000, 17 (02) :113-126
[8]   Chitosan-based vector/DNA complexes for gene delivery: Biophysical characteristics and transfection ability [J].
Erbacher, P ;
Zou, SM ;
Bettinger, T ;
Steffan, AM ;
Remy, JS .
PHARMACEUTICAL RESEARCH, 1998, 15 (09) :1332-1339
[9]   The reduction of the positive charges of polylysine by partial gluconoylation increases the transfection efficiency of polylysine/DNA complexes [J].
Erbacher, P ;
Roche, AC ;
Monsigny, M ;
Midoux, P .
BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES, 1997, 1324 (01) :27-36
[10]   A novel non-viral vector for DNA delivery based on low molecular weight, branched polyethylenimine:: Effect of molecular weight on transfection efficiency and cytotoxicity [J].
Fischer, D ;
Bieber, T ;
Li, YX ;
Elsässer, HP ;
Kissel, T .
PHARMACEUTICAL RESEARCH, 1999, 16 (08) :1273-1279