Measurements of the nonlinear beat wave produced by the interaction of counterpropagating Alfven waves

被引:8
作者
Drake, D. J. [1 ]
Howes, G. G. [2 ]
Rhudy, J. D. [1 ]
Terry, S. K. [1 ]
Carter, T. A. [3 ]
Kletzing, C. A. [2 ]
Schroeder, J. W. R. [2 ]
Skiff, F. [2 ]
机构
[1] Valdosta State Univ, Dept Phys Astron & Geosci, Valdosta, GA 31698 USA
[2] Univ Iowa, Dept Phys & Astron, Iowa City, IA 52242 USA
[3] Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90095 USA
基金
美国国家科学基金会;
关键词
MAGNETOHYDRODYNAMIC TURBULENCE; INTERSTELLAR TURBULENCE; SOLAR-WIND; PROPAGATION; EXCITATION; SPECTRUM; ENERGY; POWER;
D O I
10.1063/1.4941977
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Plasma turbulence has been shown to play a critical role in many astrophysical and space environments. In the solar corona and solar wind, this turbulence involves the nonlinear interaction of kinetic Alfven waves. In the Earth's magnetosphere, the turbulence is dominated by inertial Alfven wave collisions. Observations of these wave-wave interactions in space and in laboratory plasma environments have shown that, in addition to the nonlinear cascade of energy to small scales, the interaction also produces nonlinear beat waves that have a frequency defined by f(3)(+/-) = vertical bar f(1)+/- f(2)vertical bar. Although the temporal behavior of the beat wave has been well documented, this paper presents the first detailed analysis of the spatial structure of the nonlinearly generated beat wave. (C) 2016 AIP Publishing LLC.
引用
收藏
页数:9
相关论文
共 57 条
[1]   Small-scale energy cascade of the solar wind turbulence [J].
Alexandrova, O. ;
Carbone, V. ;
Veltri, P. ;
Sorriso-Valvo, L. .
ASTROPHYSICAL JOURNAL, 2008, 674 (02) :1153-1157
[2]   Existence of electromagnetic-hydrodynamic waves [J].
Alfven, H .
NATURE, 1942, 150 :405-406
[3]  
[Anonymous], 1964, Soviet Astronomy
[4]   DENSITY POWER SPECTRUM IN THE LOCAL INTER-STELLAR MEDIUM [J].
ARMSTRONG, JW ;
CORDES, JM ;
RICKETT, BJ .
NATURE, 1981, 291 (5816) :561-564
[5]   Resonant drive and nonlinear suppression of gradient-driven instabilities via interaction with shear Alfven waves [J].
Auerbach, D. W. ;
Carter, T. A. ;
Vincena, S. ;
Popovich, P. .
PHYSICS OF PLASMAS, 2011, 18 (05)
[6]   Solar coronal heating by plasma waves [J].
Bingham, R. ;
Shukla, P. K. ;
Eliasson, B. ;
Stenflo, L. .
JOURNAL OF PLASMA PHYSICS, 2010, 76 :135-158
[7]   Laboratory observation of a nonlinear interaction between shear Alfven waves [J].
Carter, TA ;
Brugman, B ;
Pribyl, P ;
Lybarger, W .
PHYSICAL REVIEW LETTERS, 2006, 96 (15)
[8]   Nonlinear Excitation of Acoustic Modes by Large-Amplitude Alfven Waves in a Laboratory Plasma [J].
Dorfman, S. ;
Carter, T. A. .
PHYSICAL REVIEW LETTERS, 2013, 110 (19)
[9]   Alfven wave collisions, the fundamental building block of plasma turbulence. IV. Laboratory experiment [J].
Drake, D. J. ;
Schroeder, J. W. R. ;
Howes, G. G. ;
Kletzing, C. A. ;
Skiff, F. ;
Carter, T. A. ;
Auerbach, D. W. .
PHYSICS OF PLASMAS, 2013, 20 (07)
[10]   Design and use of an Elsasser probe for analysis of Alfven wave fields according to wave direction [J].
Drake, D. J. ;
Kletzing, C. A. ;
Skiff, F. ;
Howes, G. G. ;
Vincena, S. .
REVIEW OF SCIENTIFIC INSTRUMENTS, 2011, 82 (10)