Training Signal Design for Sparse Channel Estimation in Intelligent Reflecting Surface-Assisted Millimeter-Wave Communication

被引:19
作者
Noh, Song [1 ]
Yu, Heejung [2 ]
Sung, Youngchul [3 ]
机构
[1] Incheon Natl Univ, Dept Informat & Telecommun Engn, Incheon 22012, South Korea
[2] Korea Univ, Dept Elect & Informat Engn, Sejong 30019, South Korea
[3] Korea Adv Inst Sci & Technol, Sch Elect Engn, Daejeon 305701, South Korea
基金
新加坡国家研究基金会;
关键词
Channel estimation; Training; Transmission line matrix methods; Transmitters; Bayes methods; Wireless communication; Sparse matrices; Millimeter wave (mmWave) communication; intelligent reflecting surface (IRS); signal design; sparse channel estimation; Cramer-Rao bounds; MASSIVE MIMO; CAPACITY; ANTENNA;
D O I
10.1109/TWC.2021.3112173
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this paper, the problem of training signal design for intelligent reflecting surface (IRS)-assisted millimeter-wave (mmWave) communication under a sparse channel model is considered. The problem is approached based on the Cramer-Rao lower bound (CRB) on the mean-square error (MSE) of channel estimation. By exploiting the sparse structure of mmWave channels, the CRB for the channel parameter composed of path gains and path angles is derived in closed form under Bayesian and hybrid parameter assumptions. Based on the derivation and analysis, an IRS reflection pattern design method is proposed by minimizing the CRB as a function of design variables under constant modulus constraint on reflection coefficients. Extensions of the proposed design to a multi-antenna transceiver, a uniform planar array (UPA)-based IRS, and multi-user case are discussed. Numerical results validate the effectiveness of the proposed design method for sparse mmWave channel estimation.
引用
收藏
页码:2399 / 2413
页数:15
相关论文
共 43 条
[1]   Joint Spatial Division and Multiplexing for mm-Wave Channels [J].
Adhikary, Ansuman ;
Al Safadi, Ebrahim ;
Samimi, Mathew K. ;
Wang, Rui ;
Caire, Giuseppe ;
Rappaport, Theodore S. ;
Molisch, Andreas F. .
IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, 2014, 32 (06) :1239-1255
[2]   Millimeter Wave Channel Modeling and Cellular Capacity Evaluation [J].
Akdeniz, Mustafa Riza ;
Liu, Yuanpeng ;
Samimi, Mathew K. ;
Sun, Shu ;
Rangan, Sundeep ;
Rappaport, Theodore S. ;
Erkip, Elza .
IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, 2014, 32 (06) :1164-1179
[3]   Channel Estimation and Hybrid Precoding for Millimeter Wave Cellular Systems [J].
Alkhateeb, Ahmed ;
El Ayach, Omar ;
Leus, Geert ;
Heath, Robert W., Jr. .
IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, 2014, 8 (05) :831-846
[4]  
[Anonymous], 2016, SIGNAL PROCESSING 5G, DOI DOI 10.1002/9781119116493
[5]   Wireless Communications Through Reconfigurable Intelligent Surfaces [J].
Basar, Ertugrul ;
Di Renzo, Marco ;
De Rosny, Julien ;
Debbah, Merouane ;
Alouini, Mohamed-Slim ;
Zhang, Rui .
IEEE ACCESS, 2019, 7 :116753-116773
[6]   GOLDSTEIN-LEVITIN-POLYAK GRADIENT PROJECTION METHOD [J].
BERTSEKAS, DP .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1976, 21 (02) :174-183
[7]  
BRANDWOOD DH, 1983, IEE PROC-H, V130, P11
[8]  
Bubeck S, 2017, CONVEX OPTIMIZATION
[9]   Sparsity-Promoting Sensor Selection for Non-Linear Measurement Models [J].
Chepuri, Sundeep Prabhakar ;
Leus, Geert .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2015, 63 (03) :684-698
[10]  
Cuvelier T., 2018, PROC IEEE 15 INT S W, P1