Synthesis of Cu2O@Cu-Fe-K Prussian Blue analogue core-shell nanocube for enhanced electroreduction of CO2 to multi-carbon products

被引:16
|
作者
Cheng, Yuan-Sheng [1 ]
Li, Hong [1 ]
Ling, Min [2 ]
Li, Na [2 ]
Jiang, Binbin [3 ]
Wu, Fang-Hui [1 ]
Yuan, Guozan [1 ]
Wei, Xian-Wen [1 ]
机构
[1] Anhui Univ Technol, Sch Chem & Chem Engn, Inst Mat Sci & Engn, Anhui Prov Key Lab Coal Clean Convers & High Valu, Maanshan 243002, Peoples R China
[2] Anhui Normal Univ, Coll Chem & Mat Sci, Key Lab Funct Mol Solids,Minist Educ, Anhui Lab Mol Based Mat,Anhui Key Lab Funct Mol S, Wuhu 241000, Peoples R China
[3] Anqing Normal Univ, Anhui Key Lab Funct Coordinat Cpds, Anqing 246011, Peoples R China
关键词
Carbon dioxide; Electrochemical reduction; Structural; Catalyst; Composite materials; ELECTROCHEMICAL REDUCTION; SELECTIVITY; ELECTRODES; METHANOL; COPPER;
D O I
10.1016/j.matlet.2019.126868
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Cu2O@Cu-Fe-K Prussian Blue analogue (K-PBA) core-shell nanocube was synthesized by a facile template-engaged redox deposition approach, and could be used as an efficient catalyst for CO2 electrochemical reduction (CO2ER). The presence of K-PBA shell not only can protect the Cu2O active core, but also promote the ratios of multi-carbon products to competing methane in CO2ER, achieving a total C2+ Faradaic efficiency (FE) of 23.9% (ethylene 10.8%, ethanol 3.6% and n-propanol 9.5%) at -1.11 V (vs. reversible hydrogen electrode (RHE), while j(total) = 6.2 mA cm(-2). It is suggested that K-PBA shell coating alter inherent adsorption energetics of Cu2O, which contributes to the C-C coupling step in CO2 ER. (C) 2019 Elsevier B.V. All rights reserved.
引用
收藏
页数:4
相关论文
共 50 条
  • [1] Enhanced CO Affinity on Cu Facilitates CO2 Electroreduction toward Multi-Carbon Products
    Li, Xiaotong
    Qin, Minkai
    Wu, Xiuju
    Lv, Xiangzhou
    Wang, Jianghao
    Wang, Yong
    Wu, Hao Bin
    SMALL, 2023, 19 (39)
  • [2] CeO2-modified Cu electrode for efficient CO2 electroreduction to multi-carbon products
    Zhao, Ziyi
    Li, Xiaotong
    Wang, Jianghao
    Lv, Xiangzhou
    Wu, Hao Bin
    JOURNAL OF CO2 UTILIZATION, 2021, 54
  • [3] Emerging Cu-Based Tandem Catalytic Systems for CO2 Electroreduction to Multi-Carbon Products
    Qin, Qingqing
    Suo, Hongli
    Chen, Lijia
    Wang, Yun-Xiao
    Wang, Jia-Zhao
    Liu, Hua-Kun
    Dou, Shi-Xue
    Lao, Mengmeng
    Lai, Wei-Hong
    ADVANCED MATERIALS INTERFACES, 2024, 11 (13)
  • [4] Selective electroreduction of CO2 to CO over co-electrodeposited dendritic core-shell indium-doped Cu@Cu2O catalyst
    Wang, Miao
    Ren, Xiaona
    Yuan, Gang
    Niu, Xiaopo
    Xu, Qingli
    Gao, Wenluan
    Zhu, Shuaikang
    Wang, Qingfa
    JOURNAL OF CO2 UTILIZATION, 2020, 37 : 204 - 212
  • [5] Precise Construction of Cu-Based Catalysts using Surface Molecular Modifiers for Electroreduction of CO2 to Multi-Carbon Products
    Zhang, Tingting
    He, Jing
    Xiang, Xu
    CHEMCATCHEM, 2023, 15 (24)
  • [6] Enhanced electroreduction of CO2 to C2+ products on heterostructured Cu/oxide electrodes
    Li, Xiaotong
    Liu, Qian
    Wang, Jianghao
    Meng, Dechao
    Shu, Yijin
    Lv, Xiangzhou
    Zhao, Bo
    Yang, Hao
    Cheng, Tao
    Gao, Qingsheng
    Li, Linsen
    Wu, Hao Bin
    CHEM, 2022, 8 (08): : 2148 - 2162
  • [7] Cu MOF-based electrocatalysts for CO2 reduction to multi-carbon products
    Liu, Li-Xia
    Qin, Chengyu
    Deng, Taojiang
    Sun, Liming
    Chen, Zifan
    Han, Xiguang
    JOURNAL OF MATERIALS CHEMISTRY A, 2024, 12 (39) : 26421 - 26438
  • [8] Enhanced CO2 Electroreduction to Multi-Carbon Products on Copper via Plasma Fluorination
    Zhou, Ziqian
    Hu, Xiaosong
    Li, Jiye
    Xie, Haijiao
    Wen, Liaoyong
    ADVANCED SCIENCE, 2024, 11 (22)
  • [9] Recent Advances of Core-Shell Cu-Based Catalysts for the Reduction of CO2 to C2+ Products
    Li, Lamei
    Su, Jiaqi
    Lu, Jianmei
    Shao, Qi
    CHEMISTRY-AN ASIAN JOURNAL, 2023, 18 (05)
  • [10] Promoting Cu-catalysed CO2 electroreduction to multicarbon products by tuning the activity of H2O
    Zhang, Hao
    Gao, Jiaxin
    Raciti, David
    Hall, Anthony Shoji
    NATURE CATALYSIS, 2023, 6 (09) : 807 - 817