An analytical method for free vibration analysis of functionally graded sandwich beams

被引:13
作者
Bouakkaz, K. [1 ,2 ]
Hadji, L. [1 ,2 ]
Zouatnia, N. [3 ]
Bedia, E. A. Adda [2 ]
机构
[1] Univ Ibn Khaldoun, Dept Genie Civil, BP 78 Zaaroura, Tiaret 14000, Algeria
[2] Univ Djillali Liabes Sidi Bel Abbes, Lab Mat & Hydrol, Sidi Bel Abbes 22000, Algeria
[3] Univ Chlef, Dept Genie Civil, Lab Struct Geotech & Ris, Sidi Bel Abbes, Algeria
关键词
functionally graded material; sandwich beam; hamilton's principle; vibration; HIGHER-ORDER SHEAR; REFINED PLATE-THEORY; NORMAL DEFORMATION-THEORY; BENDING ANALYSIS; EFFICIENT;
D O I
10.12989/was.2016.23.1.059
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
In this paper, a hyperbolic shear deformation beam theory is developed for free vibration analysis of functionally graded (FG) sandwich beams. The theory account for higher-order variation of transverse shear strain through the depth of the beam and satisfies the zero traction boundary conditions on the surfaces of the beam without using shear correction factors. The material properties of the functionally graded sandwich beam are assumed to vary according to power law distribution of the volume fraction of the constituents. The core layer is still homogeneous and made of an isotropic material. Based on the present refined beam theory, the equations of motion are derived from Hamilton's principle. Navier type solution method was used to obtain frequencies. Illustrative examples are given to show the effects of varying gradients and thickness to length ratios on free vibration of functionally graded sandwich beams.
引用
收藏
页码:59 / 73
页数:15
相关论文
共 40 条
[1]   Size dependent bending and vibration analysis of functionally graded micro beams based on modified couple stress theory and neutral surface position [J].
Al-Basyouni, K. S. ;
Tounsi, Abdelouahed ;
Mahmoud, S. R. .
COMPOSITE STRUCTURES, 2015, 125 :621-630
[2]   Free vibration analysis of functionally graded plates with temperature-dependent properties using various four variable refined plate theories [J].
Attia, Amina ;
Tounsi, Abdelouahed ;
Bedia, E. A. Adda ;
Mahmoud, S. R. .
STEEL AND COMPOSITE STRUCTURES, 2015, 18 (01) :187-212
[3]   Free vibration analysis of functionally graded beams with simply supported edges [J].
Aydogdu, Metin ;
Taskin, Vedat .
MATERIALS & DESIGN, 2007, 28 (05) :1651-1656
[4]   An efficient and simple higher order shear and normal deformation theory for functionally graded material (FGM) plates [J].
Belabed, Zakaria ;
Houari, Mohammed Sid Ahmed ;
Tounsi, Abdelouahed ;
Mahmoud, S. R. ;
Beg, O. Anwar .
COMPOSITES PART B-ENGINEERING, 2014, 60 :274-283
[5]   On vibration properties of functionally graded nano-plate using a new nonlocal refined four variable model [J].
Belkorissat, Ismahene ;
Houari, Mohammed Sid Ahmed ;
Tounsi, Abdelouahed ;
Bedia, E. A. Adda ;
Mahmoud, S. R. .
STEEL AND COMPOSITE STRUCTURES, 2015, 18 (04) :1063-1081
[6]   Bending and free vibration analysis of functionally graded plates using a simple shear deformation theory and the concept the neutral surface position [J].
Bellifa, Hichem ;
Benrahou, Kouider Halim ;
Hadji, L. ;
Houari, Mohammed Sid Ahmed ;
Tounsi, Abdelouahed .
JOURNAL OF THE BRAZILIAN SOCIETY OF MECHANICAL SCIENCES AND ENGINEERING, 2016, 38 (01) :265-275
[7]   A theoretical analysis of flexional bending of Al/Al2O3 S-FGM thick beams [J].
Ben-Oumrane, Sallai ;
Abedlouahed, Tounsi ;
Ismail, Mechab ;
Mohamed, Bachir Bouiadjra ;
Mustapha, Meradjah ;
El Abbas, Adda Bedia .
COMPUTATIONAL MATERIALS SCIENCE, 2009, 44 (04) :1344-1350
[8]   A new higher-order shear and normal deformation theory for functionally graded sandwich beams [J].
Bennai, Riadh ;
Atmane, Hassen Ait ;
Tounsi, Abdelouahed .
STEEL AND COMPOSITE STRUCTURES, 2015, 19 (03) :521-546
[9]   A novel five-variable refined plate theory for vibration analysis of functionally graded sandwich plates [J].
Bennoun, Mohammed ;
Houari, Mohammed Sid Ahmed ;
Tounsi, Abdelouahed .
MECHANICS OF ADVANCED MATERIALS AND STRUCTURES, 2016, 23 (04) :423-431
[10]   Thermal stability of functionally graded sandwich plates using a simple shear deformation theory [J].
Bouderba, Bachir ;
Houari, Mohammed Sid Ahmed ;
Tounsi, Abdelouahed ;
Mahmoud, S. R. .
STRUCTURAL ENGINEERING AND MECHANICS, 2016, 58 (03) :397-422