Countable partition ordinals

被引:4
作者
Schipperus, Rene [1 ]
机构
[1] Univ Calgary, Dept Math & Stat, Calgary, AB T2N 1N4, Canada
关键词
Ramsey theory; Set theory; Ordinals; Martin's axiom; Partition calculus;
D O I
10.1016/j.apal.2009.12.007
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The structure of ordinals of the form omega(omega beta) for countable beta is studied. The main result is: Theorem 1. If beta < omega(1) is the sum of one or two indecomposable ordinals, then omega(omega beta) -> (omega(omega beta), 3)(2). Also an example is given to show that alpha -> (alpha, 3)(2) need not imply alpha (alpha, n)(2) for all n < omega. (C) 2010 Published by Elsevier B.V.
引用
收藏
页码:1195 / 1215
页数:21
相关论文
共 9 条
  • [1] Chang, 1972, J COMBINATORIAL TH A, V12, P396, DOI DOI 10.1016/0097-3165(72)90105-7
  • [2] Negative partition relations for ordinals ωωα
    Darby, C
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES B, 1999, 76 (02) : 205 - 222
  • [3] Larson, 1974, FUND MATH, V82, P357, DOI DOI 10.4064/FM-82-4-357-361
  • [4] Larson J.A., 1973, Ann. Math. Log., V6, P129, DOI [DOI 10.1016/0003-4843(73)90006-5, /10.1016/0003-4843(73)90006-5]
  • [5] An ordinal partition avoiding pentagrams
    Larson, JA
    [J]. JOURNAL OF SYMBOLIC LOGIC, 2000, 65 (03) : 969 - 978
  • [6] Nash-Williams C. St. J. A., 1965, P CAMBRIDGE PHIL SOC, V61, P33
  • [7] SAUER NW, 1993, FINITE INFINITE COMB
  • [8] Specker Ernst., 1957, Comment. Math. Helv, V31, P302
  • [9] Williams N. H., 1977, COMBINATORIAL SET TH