Uncertainty evaluation in numerical modeling of complex devices

被引:2
|
作者
Cheng, X. [1 ]
Monebhurrun, V. [1 ]
机构
[1] SUPELEC, DRE L2S, Dept Electromagnet, F-91192 Gif Sur Yvette, France
来源
2ND RADIO AND ANTENNA DAYS OF THE INDIAN OCEAN (RADIO 2014) | 2014年 / 67卷
关键词
QUANTIFICATION; SIMULATION;
D O I
10.1088/1757-899X/67/1/012019
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Numerical simulation is an efficient tool for exploring and understanding the physics of complex devices, e.g. mobile phones. For meaningful results, it is important to evaluate the uncertainty of the numerical simulation. Uncertainty quantification in specific absorption rate (SAR) calculation using a full computer-aided design (CAD) mobile phone model is a challenging task. Since a typical SAR numerical simulation is computationally expensive, the traditional Monte Carlo (MC) simulation method proves inadequate. The unscented transformation (UT) is an alternative and numerically efficient method herein investigated to evaluate the uncertainty in the SAR calculation using the realistic models of two commercially available mobile phones. The electromagnetic simulation process is modeled as a nonlinear mapping with the uncertainty in the inputs e.g. the relative permittivity values of the mobile phone material properties, inducing an uncertainty in the output, e.g. the peak spatial-average SAR value.The numerical simulation results demonstrate that UT may be a potential candidate for the uncertainty quantification in SAR calculations since only a few simulations are necessary to obtain results similar to those obtained after hundreds or thousands of MC simulations.
引用
收藏
页数:4
相关论文
共 50 条
  • [1] Numerical characteristic and theory modeling for parameter uncertainty propagation in complex system
    Tang, Bingsong
    Han, Xiaolin
    Yang, Huifeng
    Zhendong Ceshi Yu Zhenduan/Journal of Vibration, Measurement and Diagnosis, 2015, 35 (01): : 88 - 93
  • [2] Numerical uncertainty evaluation for complex-valued quantities: A case example
    Callegaro, L
    Pennecchi, F
    Bich, W
    ADVANCED MATHEMATICAL & COMPUTATIONAL TOOLS IN METROLOGY VI, 2004, 66 : 274 - 278
  • [3] Numerical modeling of smart devices
    Lerch, R
    Landes, H
    Kaltenbacher, M
    IUTAM SYMPOSIUM ON DYNAMICS OF ADVANCED MATERIALS AND SMART STRUCTURES, 2003, 106 : 237 - 250
  • [4] Numerical modeling of magnetic devices
    Zhou, P
    Fu, WN
    Lin, D
    Stanton, S
    Cendes, ZJ
    IEEE TRANSACTIONS ON MAGNETICS, 2004, 40 (04) : 1803 - 1809
  • [5] NUMERICAL MODELING OF TWISTED NEMATIC DEVICES
    BERREMAN, DW
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1983, 309 (1507): : 203 - 216
  • [6] Numerical modeling of tubular daylighting devices
    Chen, Biao
    Wei, Yeyan
    Li, Xiujie
    Cao, Runze
    Jin, Peng
    OPTIK, 2017, 145 : 95 - 98
  • [7] Numerical Modeling of Superconducting Devices in OpenModelica
    Lanczont, Michal
    2017 INTERNATIONAL CONFERENCE ON ELECTROMAGNETIC DEVICES AND PROCESSES IN ENVIRONMENT PROTECTION WITH SEMINAR APPLICATIONS OF SUPERCONDUCTORS (ELMECO & AOS), 2017,
  • [8] Numerical modeling of TeraHertz electronic devices
    L. Varani
    C. Palermo
    J. F. Millithaler
    J. C. Vaissière
    E. Starikov
    P. Shiktorov
    V. Gružinskis
    J. Mateos
    S. Pérez
    D. Pardo
    T. González
    Journal of Computational Electronics, 2006, 5 : 71 - 77
  • [9] NUMERICAL MODELING OF PASSIVE MICROWAVE DEVICES
    SILVESTER, P
    CSENDES, ZJ
    IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 1974, TT22 (03) : 190 - 201
  • [10] Numerical modeling of TeraHertz electronic devices
    Varani, L.
    Palermo, C.
    Millithaler, J. F.
    Vaissiere, J. C.
    Starikov, E.
    Shiktorov, P.
    Gruzinskis, V.
    Mateos, J.
    Perez, S.
    Pardo, D.
    Gonzalez, T.
    JOURNAL OF COMPUTATIONAL ELECTRONICS, 2006, 5 (2-3) : 71 - 77