Sparse Representation-Based Multiple Frame Video Super-Resolution

被引:30
作者
Dai, Qiqin [1 ]
Yoo, Seunghwan [1 ]
Kappeler, Armin [1 ]
Katsaggelos, Aggelos K. [1 ]
机构
[1] Northwestern Univ, Dept Elect Engn & Comp Sci, Evanston, IL 60208 USA
关键词
Video super-resolution; dictionary learning; sparse coding; optical flow; motion estimation; IMAGE SUPERRESOLUTION; MOTION; RECONSTRUCTION; ALGORITHM;
D O I
10.1109/TIP.2016.2631339
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we propose two multiple-frame super-resolution (SR) algorithms based on dictionary learning (DL) and motion estimation. First, we adopt the use of video bilevel DL, which has been used for single-frame SR. It is extended to multiple frames by using motion estimation with sub-pixel accuracy. We propose a batch and a temporally recursive multi-frame SR algorithm, which improves over single-frame SR. Finally, we propose a novel DL algorithm utilizing consecutive video frames, rather than still images or individual video frames, which further improves the performance of the video SR algorithms. Extensive experimental comparisons with the state-of-the-art SR algorithms verify the effectiveness of our proposed multiple-frame video SR approach.
引用
收藏
页码:765 / 781
页数:17
相关论文
共 48 条
[1]  
[Anonymous], 2006, ADV NEURAL INF PROCE
[2]  
[Anonymous], VID ENH
[3]  
Baker Simon, 2007, 2007 11th IEEE International Conference on Computer Vision, P1
[4]   Maximum a Posteriori Video Super-Resolution Using a New Multichannel Image Prior [J].
Belekos, Stefanos P. ;
Galatsanos, Nikolaos P. ;
Katsaggelos, Aggelos K. .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2010, 19 (06) :1451-1464
[5]   Low-Complexity Single-Image Super-Resolution based on Nonnegative Neighbor Embedding [J].
Bevilacqua, Marco ;
Roumy, Aline ;
Guillemot, Christine ;
Morel, Marie-Line Alberi .
PROCEEDINGS OF THE BRITISH MACHINE VISION CONFERENCE 2012, 2012,
[6]  
Borman S., 1998, P 1998 MIDW S CIRC S, V5, P374, DOI DOI 10.1109/MWSCAS.1998.759509
[7]  
Boyd S, 2004, CONVEX OPTIMIZATION
[8]   Super-resolution through neighbor embedding [J].
Chang, H ;
Yeung, DY ;
Xiong, Y .
PROCEEDINGS OF THE 2004 IEEE COMPUTER SOCIETY CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, VOL 1, 2004, :275-282
[9]  
Dai QQ, 2015, IEEE IMAGE PROC, P83, DOI 10.1109/ICIP.2015.7350764
[10]   Learning a Deep Convolutional Network for Image Super-Resolution [J].
Dong, Chao ;
Loy, Chen Change ;
He, Kaiming ;
Tang, Xiaoou .
COMPUTER VISION - ECCV 2014, PT IV, 2014, 8692 :184-199