Artificial intelligence associated with Sentinel-2 data in predicting commercial volume in Brazilian Amazon Forest

被引:3
|
作者
Goncalves, Francimar Carvalho [1 ]
Miguel, Eder Pereira [1 ]
Trondoli Matricardi, Eraldo Aparecido [1 ]
Emmert, Fabiano [2 ]
Santana, Charles Cardoso [3 ]
机构
[1] Univ Brasilia, Brasilia, DF, Brazil
[2] Univ Fed Rural Amazonia, Belem, Para, Brazil
[3] Univ Fed Vicosa, Vicosa, MG, Brazil
关键词
Amazon; remote sensing; Sentinel-2; images; artificial neural network; management plan; modeling; BASAL AREA INCREMENT; TROPICAL RAIN-FOREST; VEGETATION INDEX; ABOVEGROUND BIOMASS; STAND PARAMETERS; NEURAL-NETWORKS; EQUATIONS; IMAGE; RORAIMA; MODELS;
D O I
10.1117/1.JRS.15.044511
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Forest inventory and monitoring is normally carried out based on field measurements of biophysical attributes such as diameter, height, and the number of trees, which is a labor, time, and money consuming activity. Satellite data associated with artificial intelligence tools are alternative approaches to estimate forest parameters at large scales. We assessed correlation of forest variables measured in the field with different vegetation indices (VIs) (normalized difference vegetation index, soil adjusted vegetation index, modified soil adjusted vegetation index, enhanced vegetation index, and enhanced vegetation index adjusted 2.2), retrieved from Sentinel-2 imagery to predict the volume of commercial trees (VCC) showing a minimum commercial diameter (MCD) >= 50 cm in a sustainable forest management plan in the Brazilian Amazon region. A total of 150 artificial neural networks (ANNs) of the multilayer perception type were trained and supervised. Subsequently, the five best-performing networks were retained based on the fit and accuracy statistics. The ANN-1 showed the best statistical results [root-mean-square error <10% and correlation coefficient (r) > 0.98] to predict the VCC using as input variables the number of trees per hectare showing MCD >= 50 cm and all tested VIs. Our study shows promising results that may contribute to improving forest management planning at large scales in remote areas in tropical regions. (C) 2021 Society of Photo Optical Instrumentation Engineers (SPIE)
引用
收藏
页数:19
相关论文
共 50 条
  • [21] Map of forest tree species for Poland based on Sentinel-2 data
    Grabska-Szwagrzyk, Ewa
    Tiede, Dirk
    Sudmanns, Martin
    Kozak, Jacek
    EARTH SYSTEM SCIENCE DATA, 2024, 16 (06) : 2877 - 2891
  • [22] FOREST ABOVEGROUND BIOMASS ESTIMATION USING A COMBINATION OF SENTINEL-1 AND SENTINEL-2 DATA
    Hoscilo, Agata
    Lewandowska, Aneta
    Ziolkowski, Dariusz
    Sterenczak, Krzysztof
    Lisanczuk, Marek
    Schmullius, Christiane
    Pathe, Carsten
    IGARSS 2018 - 2018 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2018, : 9026 - 9029
  • [23] Deep Transformer-Based Network Deforestation Detection in the Brazilian Amazon Using Sentinel-2 Imagery
    Alshehri, Mariam
    Ouadou, Anes
    Scott, Grant J.
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2024, 21 : 1 - 5
  • [24] Comparing Sentinel-2 MSI and Landsat 8 OLI Imagery for Monitoring Selective Logging in the Brazilian Amazon
    Lima, Thais Almeida
    Beuchle, Rene
    Langner, Andreas
    Grecchi, Rosana Cristina
    Griess, Verena C.
    Achard, Frederic
    REMOTE SENSING, 2019, 11 (08)
  • [25] Predicting forest fire probability in Similipal Biosphere Reserve (India) using Sentinel-2 MSI data and machine learning
    Guria, Rajkumar
    Mishra, Manoranjan
    da Silva, Richarde Marques
    Mishra, Minati
    Santos, Celso Augusto Guimaraes
    REMOTE SENSING APPLICATIONS-SOCIETY AND ENVIRONMENT, 2024, 36
  • [26] Synergistic Use of Sentinel-1 and Sentinel-2 Based on Different Preprocessing for Predicting Forest Aboveground Biomass
    Fang, Gengsheng
    Yu, Hangyuan
    Fang, Luming
    Zheng, Xinyu
    FORESTS, 2023, 14 (08):
  • [27] Toward Landsat and Sentinel-2 BRDF Normalization and Albedo Estimation: A Case Study in the Peruvian Amazon Forest
    Franch, Belen
    Vermote, Eric
    Skakun, Sergii
    Roger, Jean-Claude
    Santamaria-Artigas, Andres
    Villaescusa-Nadal, Jose Luis
    Masek, Jeff
    FRONTIERS IN EARTH SCIENCE, 2018, 6
  • [28] Reply to Comment on "Comparison of Cloud Cover Detection Algorithms on Sentinel-2 Images of the Amazon Tropical Forest"
    Sanchez, Alber Hamersson
    Picoli, Michelle Cristina A.
    Camara, Gilberto
    Andrade, Pedro R.
    Chaves, Michel Eustaquio D.
    Lechler, Sarah
    Soares, Anderson R.
    Marujo, Rennan F. B.
    Simoes, Rolf Ezequiel O.
    Ferreira, Karine R.
    Queiroz, Gilberto R.
    REMOTE SENSING, 2021, 13 (05)
  • [29] Age information retrieval of Larix gmelinii forest using Sentinel-2 data
    Tang S.
    Tian Q.
    Xu K.
    Xu N.
    Yue J.
    Yaogan Xuebao/Journal of Remote Sensing, 2020, 24 (12): : 1511 - 1524
  • [30] Exploring Bamboo Forest Aboveground Biomass Estimation Using Sentinel-2 Data
    Chen, Yuyun
    Li, Longwei
    Lu, Dengsheng
    Li, Dengqiu
    REMOTE SENSING, 2019, 11 (01)