Quench dynamics of entanglement in an open anisotropic spin-1/2 Heisenberg chain

被引:10
作者
Ren, Jie [1 ,2 ]
Zhu, Shiqun [3 ]
机构
[1] Changshu Inst Technol, Dept Phys, Changshu 215500, Jiangsu, Peoples R China
[2] Changshu Inst Technol, Jiangsu Lab Adv Funct Mat, Changshu 215500, Jiangsu, Peoples R China
[3] Suzhou Univ, Sch Phys Sci & Technol, Suzhou 215006, Jiangsu, Peoples R China
来源
PHYSICAL REVIEW A | 2010年 / 81卷 / 01期
基金
中国国家自然科学基金;
关键词
STATE;
D O I
10.1103/PhysRevA.81.014302
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The quantum entanglement dynamics of a one-dimensional spin-1/2 anisotropic XXZ model is studied using the method of the adaptive time-dependent density-matrix renormalization group when two cases of quenches are performed in the system. An anisotropic interaction quench and the maximum number of domain walls of a staggered magnetization quench are considered. The dynamics of the pairwise entanglement between the nearest two qubits in the spin chain is investigated. The entanglement of the two spin qubits can be created and oscillates in both cases of the quench. The anisotropic interaction has a strong influence on the oscillation frequency of the entanglement.
引用
收藏
页数:4
相关论文
共 36 条
  • [1] Dynamics of entanglement in one-dimensional spin systems
    Amico, L
    Osterloh, A
    Plastina, F
    Fazio, R
    Massimo Palma, G
    [J]. PHYSICAL REVIEW A, 2004, 69 (02): : 24
  • [2] Entanglement in many-body systems
    Amico, Luigi
    Fazio, Rosario
    Osterloh, Andreas
    Vedral, Vlatko
    [J]. REVIEWS OF MODERN PHYSICS, 2008, 80 (02) : 517 - 576
  • [3] Staggered magnetization and entanglement enhancement by magnetic impurities in a S=1/2 spin chain
    Apollaro, Tony J.
    Cuccoli, Alessandro
    Fubini, Andrea
    Plastina, Francesco
    Verrucchi, Paola
    [J]. PHYSICAL REVIEW A, 2008, 77 (06):
  • [4] Entanglement localization by a single defect in a spin chain
    Apollaro, Tony J. G.
    Plastina, Francesco
    [J]. PHYSICAL REVIEW A, 2006, 74 (06):
  • [5] TELEPORTING AN UNKNOWN QUANTUM STATE VIA DUAL CLASSICAL AND EINSTEIN-PODOLSKY-ROSEN CHANNELS
    BENNETT, CH
    BRASSARD, G
    CREPEAU, C
    JOZSA, R
    PERES, A
    WOOTTERS, WK
    [J]. PHYSICAL REVIEW LETTERS, 1993, 70 (13) : 1895 - 1899
  • [6] Lieb-robinson bounds and the generation of correlations and topological quantum order
    Bravyi, S.
    Hastings, M. B.
    Verstraete, F.
    [J]. PHYSICAL REVIEW LETTERS, 2006, 97 (05)
  • [7] Evolution of entanglement entropy in one-dimensional systems
    Calabrese, P
    Cardy, J
    [J]. JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2005, : 15 - 38
  • [8] Chuang I. N., 2000, Quantum Computation and Quantum Information
  • [9] Entropy of entanglement and correlations induced by a quench: Dynamics of a quantum phase transition in the quantum Ising model
    Cincio, Lukasz
    Dziarmaga, Jacek
    Rams, Marek M.
    Zurek, Wojciech H.
    [J]. PHYSICAL REVIEW A, 2007, 75 (05):
  • [10] Entanglement entropy dynamics of Heisenberg chains
    De Chiara, G
    Montangero, S
    Calabrese, P
    Fazio, R
    [J]. JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2006,