Foreground-Aware Relation Network for Geospatial Object Segmentation in High Spatial Resolution Remote Sensing Imagery

被引:254
作者
Zheng, Zhuo [1 ]
Zhong, Yanfei [1 ]
Wang, Junjue [1 ]
Ma, Ailong [1 ]
机构
[1] Wuhan Univ, Wuhan, Peoples R China
来源
2020 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR) | 2020年
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
SEMANTIC SEGMENTATION; DEEP;
D O I
10.1109/CVPR42600.2020.00415
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Geospatial object segmentation, as a particular semantic segmentation task, always faces with larger-scale variation, larger intra-class variance of background, and foreground-background imbalance in the high spatial resolution (HSR) remote sensing imagery. However, general semantic segmentation methods mainly focus on scale variation in the natural scene, with inadequate consideration of the other two problems that usually happen in the large area earth observation scene. In this paper, we argue that the problems lie on the lack of foreground modeling and propose a foreground-aware relation network (FarSeg) from the perspectives of relation-based and optimization-based foreground modeling, to alleviate the above two problems. From perspective of relation, FarSeg enhances the discrimination of foreground features via foreground-correlated contexts associated by learning foreground-scene relation. Meanwhile, from perspective of optimization, a foreground-aware optimization is proposed to focus on foreground examples and hard examples of background during training for a balanced optimization. The experimental results obtained using a large scale dataset suggest that the proposed method is superior to the state-of-the-art general semantic segmentation methods and achieves a better trade-off between speed and accuracy.
引用
收藏
页码:4095 / 4104
页数:10
相关论文
共 48 条
[1]  
[Anonymous], 2014, INT C LEARN REPR ICL
[2]  
[Anonymous], 2012, P 25 INT C NEURAL IN
[3]   SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation [J].
Badrinarayanan, Vijay ;
Kendall, Alex ;
Cipolla, Roberto .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2017, 39 (12) :2481-2495
[4]   RoadTracer: Automatic Extraction of Road Networks from Aerial Images [J].
Bastani, Favyen ;
He, Songtao ;
Abbar, Sofiane ;
Alizadeh, Mohammad ;
Balakrishnan, Hari ;
Chawla, Sanjay ;
Madden, Sam ;
DeWitt, David .
2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, :4720-4728
[5]   Improved Road Connectivity by Joint Learning of Orientation and Segmentation [J].
Batra, Anil ;
Singh, Suriya ;
Pang, Guan ;
Basu, Saikat ;
Jawahar, C., V ;
Paluri, Manohar .
2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, :10377-10385
[6]  
Chen LC., 2017, Computing Research Repository, V1706, P05587
[7]   Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation [J].
Chen, Liang-Chieh ;
Zhu, Yukun ;
Papandreou, George ;
Schroff, Florian ;
Adam, Hartwig .
COMPUTER VISION - ECCV 2018, PT VII, 2018, 11211 :833-851
[8]   DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs [J].
Chen, Liang-Chieh ;
Papandreou, George ;
Kokkinos, Iasonas ;
Murphy, Kevin ;
Yuille, Alan L. .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2018, 40 (04) :834-848
[9]   Attention to Scale: Scale-aware Semantic Image Segmentation [J].
Chen, Liang-Chieh ;
Yang, Yi ;
Wang, Jiang ;
Xu, Wei ;
Yuille, Alan L. .
2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, :3640-3649
[10]   Xception: Deep Learning with Depthwise Separable Convolutions [J].
Chollet, Francois .
30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, :1800-1807