Sampling using SU(N) gauge equivariant flows

被引:70
作者
Boyda, Denis [1 ]
Kanwar, Gurtej [1 ]
Racaniere, Sebastien [2 ]
Rezende, Danilo Jimenez [2 ]
Albergo, Michael S. [3 ]
Cranmer, Kyle [3 ]
Hackett, Daniel C. [1 ]
Shanahan, Phiala E. [1 ]
机构
[1] MIT, Ctr Theoret Phys, Cambridge, MA 02139 USA
[2] DeepMind, London N1C 4AG, England
[3] NYU, Ctr Cosmol & Particle Phys, 550 1St Ave, New York, NY 10003 USA
基金
美国国家科学基金会;
关键词
D O I
10.1103/PhysRevD.103.074504
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We develop a flow-based sampling algorithm for SU(N) lattice gauge theories that is gauge invariant by construction. Our key contribution is constructing a class of flows on an SU(N) variable [or on a U(N) variable by a simple alternative] that respects matrix conjugation symmetry. We apply this technique to sample distributions of single SU(N) variables and to construct flow-based samplers for SU(2) and SU(3) lattice gauge theory in two dimensions.
引用
收藏
页数:25
相关论文
共 74 条
[1]   Flow-based generative models for Markov chain Monte Carlo in lattice field theory [J].
Albergo, M. S. ;
Kanwar, G. ;
Shanahan, P. E. .
PHYSICAL REVIEW D, 2019, 100 (03)
[2]   DeepHyper: Asynchronous Hyperparameter Search for Deep Neural Networks [J].
Balaprakash, Prasanna ;
Salim, Michael ;
Uram, Thomas D. ;
Vishwanath, Venkat ;
Wild, Stefan M. .
2018 IEEE 25TH INTERNATIONAL CONFERENCE ON HIGH PERFORMANCE COMPUTING (HIPC), 2018, :42-51
[3]  
Bekkers E. J., ARXIV190912057
[4]   Gauge redundancy-free formulation of compact QED with dynamical matter for quantum and classical computations [J].
Bender, Julian ;
Zohar, Erez .
PHYSICAL REVIEW D, 2020, 102 (11)
[5]   Adventure in Topological Phase Transitions in 3+1-D: Non-Abelian Deconfined Quantum Criticalities and a Possible Duality [J].
Bi, Zhen ;
Senthil, T. .
PHYSICAL REVIEW X, 2019, 9 (02)
[6]   Variational Inference: A Review for Statisticians [J].
Blei, David M. ;
Kucukelbir, Alp ;
McAuliffe, Jon D. .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2017, 112 (518) :859-877
[7]  
Bouchacourt D, 2020, INT C LEARN REPR ADD
[8]  
Bradbury J., 2018, JAX: composable transformations of Python+NumPy programs
[9]  
Bump D, 2004, LIE GROUPS, P112
[10]  
Cohen T. S., ARXIV190204615