Loop groups and noncommutative geometry

被引:0
作者
Carpi, Sebastiano [1 ]
Hillier, Robin [2 ]
机构
[1] Univ Chieti Pescara G dAnnunzio, Dipartimento Econ, Viale Pindaro 42, I-65127 Pescara, Italy
[2] Univ Lancaster, Dept Math & Stat, Lancaster LA1 4YF, England
关键词
Conformal nets; fusion ring; spectral triples; JLO cocycles; K-theory; TWISTED K-THEORY; POSITIVE ENERGY REPRESENTATIONS; LOCAL CONFORMAL NETS; OPERATOR-ALGEBRAS; MODULAR INVARIANTS; FIELD-THEORIES; THEORY II; EXTENSIONS; SUBFACTORS; FUSION;
D O I
10.1142/S0129055X17500295
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We describe the representation theory of loop groups in terms of K-theory and noncommutative geometry. This is done by constructing suitable spectral triples associated with the level l projective unitary positive-energy representations of any given loop group LG. The construction is based on certain supersymmetric conformal field theory models associated with LG in the setting of conformal nets. We then generalize the construction to many other rational chiral conformal field theory models including coset models and the moonshine conformal net.
引用
收藏
页数:42
相关论文
共 104 条
[1]  
[Anonymous], 1998, MATH SCI RES I PUBLI
[2]  
[Anonymous], 1983, Les Houches Ec. d'Ete Phys. Theor., Sess.
[3]  
[Anonymous], 1994, NONCOMMUTATIVE GEOME
[4]  
Araki H., 1970, Publ. Res. Inst. Math. Sci., V6, P385, DOI DOI 10.2977/PRIMS/1195193913
[5]  
Bakalov B., 2001, Translations of Mathematical Monographs
[6]  
Behncke H., 1974, J. Func. Anal, V16, P241, DOI DOI 10.1007/BF01393687
[7]  
Bischoff M, 2016, LETT MATH PHYS, V106, P341, DOI 10.1007/s11005-016-0816-z
[8]  
Blackadar B., 2006, Operator Algebras
[9]   Localized endomorphisms of the chiral Ising model [J].
Bockenhauer, J .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1996, 177 (02) :265-304
[10]  
Bratteli O, 1997, OPERATOR ALGEBRAS QU