Fractal dimension measurement of engineering surfaces

被引:23
|
作者
Russ, JC [1 ]
机构
[1] Taylor Hobson Ltd, Leicester, Leics, England
来源
关键词
D O I
10.1016/S0890-6955(97)00103-X
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Many types of engineered surfaces have been observed to exhibit a fractal geometry. In some cases, modeling the generation of the surfaces predicts this and provides correlation between the dimension and history and properties of the surfaces. The complex process of machining precision surfaces does not yet lend itself to such detailed modeling, but observations of the correlations between production methods and surface dimension, independent of material type and hardness, offer encouragement. (C) 1998 Elsevier Science Ltd.
引用
收藏
页码:567 / 571
页数:5
相关论文
共 50 条
  • [21] Relation between fractal dimension and roughness index for fractal surfaces
    Lung, CW
    Jiang, J
    Tian, EK
    Zhang, CH
    PHYSICAL REVIEW E, 1999, 60 (05): : 5121 - 5125
  • [22] The new dimension in engineering surfaces
    Sundarshan, TS
    SURFACE ENGINEERING, 2001, 17 (01) : 1 - 2
  • [23] ELECTROCHEMICAL DETERMINATION OF THE FRACTAL DIMENSION OF FRACTURED SURFACES
    IMRE, A
    PAJKOSSY, T
    NYIKOS, L
    ACTA METALLURGICA ET MATERIALIA, 1992, 40 (08): : 1819 - 1826
  • [24] ON THE FRACTAL DIMENSION OF FRACTURE SURFACES OF CONCRETE ELEMENTS
    BRANDT, AM
    PROKOPSKI, G
    JOURNAL OF MATERIALS SCIENCE, 1993, 28 (17) : 4762 - 4766
  • [25] Estimating the fractal dimension of synthetic topographic surfaces
    Tate, NJ
    COMPUTERS & GEOSCIENCES, 1998, 24 (04) : 325 - +
  • [26] FRACTAL DIMENSION OF FRACTURED SURFACES - A UNIVERSAL VALUE
    BOUCHAUD, E
    LAPASSET, G
    PLANES, J
    EUROPHYSICS LETTERS, 1990, 13 (01): : 73 - 79
  • [27] BOX DIMENSION OF BILINEAR FRACTAL INTERPOLATION SURFACES
    Kong, Qing-Ge
    Ruan, Huo-Jun
    Zhang, Sheng
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2018, 98 (01) : 113 - 121
  • [28] The Minkowski dimension of the bivariate fractal interpolation surfaces
    Malysz, R
    CHAOS SOLITONS & FRACTALS, 2006, 27 (05) : 1147 - 1156
  • [29] MEASURING THE FRACTAL DIMENSION OF NATURAL SURFACES USING A ROBUST FRACTAL ESTIMATOR
    CLARKE, KC
    SCHWEIZER, DM
    CARTOGRAPHY AND GEOGRAPHIC INFORMATION SYSTEMS, 1991, 18 (01): : 37 - 47
  • [30] Stickiness of randomly rough surfaces with high fractal dimension: is there a fractal limit?
    Violano, G.
    Papangelo, A.
    Ciavarella, M.
    TRIBOLOGY INTERNATIONAL, 2021, 159