Rational nodal curves with no smooth Weierstrass points

被引:4
作者
Garcia, A [1 ]
Lax, RF [1 ]
机构
[1] LOUISIANA STATE UNIV,DEPT MATH,BATON ROUGE,LA 70803
关键词
Weierstrass point; rational nodal curve;
D O I
10.1090/S0002-9939-96-03298-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let X denote the rational curve with n+1 nodes obtained from the Riemann sphere by identifying 0 with infinity and zeta(j) with -zeta(j) for j = 0, 1,..., n-1, where zeta is a primitive (2n)th root of unity. We show that if n is even, then X has no smooth Weierstrass points, while if n is odd, then X has 2n smooth Weierstrass points.
引用
收藏
页码:407 / 413
页数:7
相关论文
共 15 条
[1]  
ACCOLA RDM, 1978, GEN WEIERSTRASS POIN, P1
[2]  
CHIARLI N, 1984, CR ACAD SCI I-MATH, V6, P67
[3]  
Fulton W., 2013, INTERSECTION THEORY, DOI DOI 10.1007/978-3-662-02421-8
[4]   ON WEIERSTRASS POINTS ON ARTIN-SCHREIER EXTENSIONS OF K(X) [J].
GARCIA, A .
MATHEMATISCHE NACHRICHTEN, 1989, 144 :233-239
[5]   WEIERSTRASS WEIGHT OF GORENSTEIN SINGULARITIES WITH ONE OR 2 BRANCHES [J].
GARCIA, A ;
LAX, RF .
MANUSCRIPTA MATHEMATICA, 1993, 81 (3-4) :361-378
[6]   WEIERSTRASS POINTS ON GORENSTEIN CURVES IN ARBITRARY CHARACTERISTIC [J].
GARCIA, A ;
LAX, RF .
COMMUNICATIONS IN ALGEBRA, 1994, 22 (12) :4841-4854
[7]  
GARCIA A, IN PRESS J ALG
[8]   WEIERSTRASS POINTS ON RATIONAL NODAL CURVES OF GENUS-3 [J].
LAX, RF ;
WIDLAND, C .
CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 1987, 30 (03) :286-294
[9]   WEIERSTRASS POINTS ON RATIONAL NODAL CURVES [J].
LAX, RF .
GLASGOW MATHEMATICAL JOURNAL, 1987, 29 :131-140
[10]  
LEWITTES J, 1963, AM J MATH, V85, P732