On size, order, diameter and edge-connectivity of graphs

被引:4
作者
Ali, P. [1 ]
Mazorodze, J. P. [2 ]
Mukwembi, S. [2 ,3 ]
Vetrik, T. [4 ]
机构
[1] Univ Malawi, Dept Math Sci, Chancellor Coll, Zomba, Malawi
[2] Univ Zimbabwe, Dept Math, Harare, Zimbabwe
[3] Univ KwaZulu Natal, Sch Math Stat & Comp Sci, Durban, South Africa
[4] Univ Free State, Dept Math & Appl Math, Bloemfontein, South Africa
基金
新加坡国家研究基金会;
关键词
extremal graph theory; size; order; diameter; edge-connectivity; MINIMUM DEGREE;
D O I
10.1007/s10474-017-0699-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
To bound the size (the number of edges) of a graph in terms of other parameters of a graph forms an important family of problems in the extremal graph theory. We present a number of upper bounds on the size of general graphs and triangle-free graphs. We bound the size of any graph and of any triangle-free graph in terms of its order (number of vertices), diameter and edge-connectivity. We also give an upper bound on the size of triangle-free graphs of given order, diameter and minimum degree. All bounds presented in this paper are asymptotically sharp.
引用
收藏
页码:11 / 24
页数:14
相关论文
共 14 条
[1]  
Bollobas B., 1976, ARS COMBINATORIA, V2, P3
[2]   GRAPHS OF MAXIMUM DIAMETER [J].
CACCETTA, L ;
SMYTH, WF .
DISCRETE MATHEMATICS, 1992, 102 (02) :121-141
[3]  
Caccetta L., 1987, J. Combin. Math. Combin. Comput, V2, P111
[4]   Maximum sizes of graphs with given domination parameters [J].
Dankelmann, P ;
Domke, GS ;
Goddard, W ;
Grobler, P ;
Hattingh, JH ;
Swart, HC .
DISCRETE MATHEMATICS, 2004, 281 (1-3) :137-148
[5]   Minimum size of a graph or digraph of given radius [J].
Dankelmann, Peter ;
Volkmann, Lutz .
INFORMATION PROCESSING LETTERS, 2009, 109 (16) :971-973
[6]  
ERDOS P, 1989, J COMB THEORY B, V47, P73
[7]  
Erdos P., 1966, Studia Sci. Math. Hungar., V1, P215
[8]  
Erdos P., 1963, PUBL MATH I HUNG, V7, P623
[9]   THE MAXIMUM NUMBER OF EDGES IN A MINIMAL GRAPH OF DIAMETER-2 [J].
FUREDI, Z .
JOURNAL OF GRAPH THEORY, 1992, 16 (01) :81-98
[10]   On size, order, diameter and minimum degree [J].
Mukwembi, Simon .
INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2013, 44 (04) :467-472