WINNet: Wavelet-Inspired Invertible Network for Image Denoising

被引:86
作者
Huang, Jun-Jie [1 ]
Dragotti, Pier Luigi [2 ]
机构
[1] Natl Univ Def Technol, Coll Comp Sci, Changsha 410073, Peoples R China
[2] Imperial Coll London, Dept Elect & Elect Engn, London SW7 2AZ, England
基金
英国工程与自然科学研究理事会;
关键词
Image denoising; wavelet transform; invertible neural networks; TRANSFORM; ALGORITHM; SPARSE; DICTIONARIES; CNN;
D O I
10.1109/TIP.2022.3184845
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Image denoising aims to restore a clean image from an observed noisy one. Model-based image denoising approaches can achieve good generalization ability over different noise levels and are with high interpretability. Learning-based approaches are able to achieve better results, but usually with weaker generalization ability and interpretability. In this paper, we propose a wavelet-inspired invertible network (WINNet) to combine the merits of the wavelet-based approaches and learning-based approaches. The proposed WINNet consists of K-scale of lifting inspired invertible neural networks (LINNs) and sparsity-driven denoising networks together with a noise estimation network. The network architecture of LINNs is inspired by the lifting scheme in wavelets. LINNs are used to learn a non-linear redundant transform with perfect reconstruction property to facilitate noise removal. The denoising network implements a sparse coding process for denoising. The noise estimation network estimates the noise level from the input image which will be used to adaptively adjust the soft-thresholds in LINNs. The forward transform of LINNs produces a redundant multi-scale representation for denoising. The denoised image is reconstructed using the inverse transform of LINNs with the denoised detail channels and the original coarse channel. The simulation results show that the proposed WINNet method is highly interpretable and has strong generalization ability to unseen noise levels. It also achieves competitive results in the non-blind/blind image denoising and in image deblurring.
引用
收藏
页码:4377 / 4392
页数:16
相关论文
共 71 条
[11]   Adaptive wavelet thresholding for image denoising and compression [J].
Chang, SG ;
Yu, B ;
Vetterli, M .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2000, 9 (09) :1532-1546
[12]   Trainable Nonlinear Reaction Diffusion: A Flexible Framework for Fast and Effective Image Restoration [J].
Chen, Yunjin ;
Pock, Thomas .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2017, 39 (06) :1256-1272
[13]   Xception: Deep Learning with Depthwise Separable Convolutions [J].
Chollet, Francois .
30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, :1800-1807
[14]   Image denoising by sparse 3-D transform-domain collaborative filtering [J].
Dabov, Kostadin ;
Foi, Alessandro ;
Katkovnik, Vladimir ;
Egiazarian, Karen .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2007, 16 (08) :2080-2095
[15]   Factoring wavelet transforms into lifting steps [J].
Daubechies, I ;
Sweldens, W .
JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 1998, 4 (03) :247-269
[16]   An iterative thresholding algorithm for linear inverse problems with a sparsity constraint [J].
Daubechies, I ;
Defrise, M ;
De Mol, C .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2004, 57 (11) :1413-1457
[17]  
Dinh L., 2016, 5 INT C LEARN REPR I
[18]  
Dinh L., 2015, NICE: non-linear independent components estimation
[19]   Wavelet frame based blind image inpainting [J].
Dong, Bin ;
Ji, Hui ;
Li, Jia ;
Shen, Zuowei ;
Xu, Yuhong .
APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2012, 32 (02) :268-279
[20]  
Dong WS, 2011, PROC CVPR IEEE, P457, DOI 10.1109/CVPR.2011.5995478