Lubricant film thickness and friction force measurements in a laser surface textured reciprocating line contact simulating the piston ring-liner pairing

被引:136
作者
Vladescu, Sorin-Cristian [1 ]
Medina, Simon [1 ]
Olver, Andrew V. [1 ]
Pegg, Ian G. [2 ]
Reddyhoff, Tom [1 ]
机构
[1] Univ London Imperial Coll Sci Technol & Med, Dept Mech Engn, Tribol Grp, Exhibit Rd, London SW7 2AZ, England
[2] Ford Motor Co Ltd, Dunton, Essex, England
关键词
Surface texture; Piston rings; Optical interferometry; Thin film lubrication; LAYER IMAGING METHOD; HYDRODYNAMIC LUBRICATION; INLET SUCTION; OIL FILM; PERFORMANCE; REDUCTION; STEEL; CONVERGENT; MECHANISMS; EFFICIENCY;
D O I
10.1016/j.triboint.2016.02.026
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
Applying surface texture to piston liners may provide an effective means of controlling friction and hence improving engine efficiency. However, little is understood about the mechanisms by which pockets affect friction, primarily because of a lack of reliable experimental measurements. To address this, the influence of surface texture on film thickness and friction force was measured simultaneously in a convergent divergent bearing, under conditions that closely replicate an automotive piston ring-liner conjunction. Film thicknesses were measured using a modified version of the ultra-thin film optical interferometry approach, enabling film thicknesses < 50 nm to be measured under transient, mixed lubrication conditions. This involved using the out-of-contact curvature of the specimens in place of a spacer layer and analysing multiple interference fringes to avoid fringe ambiguity. Tests were performed on both a textured sample (with features oriented normal to the direction of sliding) and a non-textured reference sample, while angular velocity, applied normal load and lubricant temperature were controlled in order to study the effect of varying lubrication regime (as typically occurs in service). Results showed that the presence of surface pockets consistently enhances fluid film thickness in the mixed lubrication regime by approximately 20 nm. Although this is only a modest increase, the effect on friction is pronounced (up to 41% under these conditions), due to the strong dependence of friction on film thickness in the mixed regime. Conversely, in the full film regime, texture caused a reduction in film thickness and hence increased friction force, compared with the non-textured reference. Both textured and non-textured friction values show nearly identical dependence on film thickness, (showing that, under these conditions, texture-induced friction reduction results entirely from the change in film thickness). These results are important in providing film thickness data to validate piston-ring lubrication models and also in helping to understand the effect of surface roughness on texture performance. (C) 2016 Elsevier Ltd. All rights reserved.
引用
收藏
页码:317 / 329
页数:13
相关论文
共 61 条
[1]   MICROASPERITY LUBRICATION [J].
ANNO, JN ;
WALOWIT, JA ;
ALLEN, CM .
JOURNAL OF LUBRICATION TECHNOLOGY, 1968, 90 (02) :351-&
[2]  
[Anonymous], P I MECH ENG J
[3]  
[Anonymous], ASLE T
[4]  
[Anonymous], SAE T J FUELS LUBR
[5]  
[Anonymous], J TRIBOL
[6]  
[Anonymous], P 5 LEEDS LYON S EL
[7]  
[Anonymous], MODERN DEV FLUID MEC
[8]  
[Anonymous], TRIBOLOGISCH GESTALT
[9]   Ultrasonic Imaging of the Piston Ring Oil Film During Operation in a Motored Engine - Towards Oil Film Thickness Measurement [J].
Avan, Emin Yusuf ;
Mills, Robin ;
Dwyer-Joyce, Rob .
SAE INTERNATIONAL JOURNAL OF FUELS AND LUBRICANTS, 2010, 3 (02) :786-793
[10]   Lubricated sliding performance of laser-patterned sapphire [J].
Blatter, A ;
Maillat, M ;
Pimenov, SM ;
Shafeev, GA ;
Simakin, AV ;
Loubnin, EN .
WEAR, 1999, 232 (02) :226-230