Bloch decomposition-based Gaussian beam method for the Schrodinger equation with periodic potentials

被引:23
作者
Jin, Shi [1 ]
Wu, Hao [2 ]
Yang, Xu [1 ]
Huang, Zhongyi [2 ]
机构
[1] Univ Wisconsin, Dept Math, Madison, WI 53706 USA
[2] Tsinghua Univ, Dept Math Sci, Beijing 10084, Peoples R China
关键词
Schrodinger equation; Periodic potential; Bloch decomposition; Gaussian beam method; Liouville equation; MULTIPHASE SEMICLASSICAL APPROXIMATION; DIMENSIONAL CRYSTALLINE LATTICE; LEVEL SET; GEOMETRIC OPTICS; LIMIT; ELECTRON; DYNAMICS; COMPUTATION; WAVES;
D O I
10.1016/j.jcp.2010.01.025
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The linear Schrodinger equation with periodic potentials is an important model in solid state physics. The most efficient direct simulation using a Bloch decomposition-based time-splitting spectral method [18] requires the mesh size to be 0(epsilon) where epsilon is the scaled semiclassical parameter. In this paper, we generalize the Gaussian beam method introduced in Jin et al. [23] to solve this problem asymptotically. We combine the technique of Bloch decomposition and the Eulerian Gaussian beam method to arrive at an Eulerian computational method that requires mesh size of 0(root epsilon). The accuracy of this method is demonstrated via several numerical examples. (c) 2010 Elsevier Inc. All rights reserved.
引用
收藏
页码:4869 / 4883
页数:15
相关论文
共 40 条
[1]  
Ashcroft N., 2011, Solid State Physics
[2]   Radiative transport in a periodic structure [J].
Bal, G ;
Fannjiang, A ;
Papanicolaou, G ;
Ryzhik, L .
JOURNAL OF STATISTICAL PHYSICS, 1999, 95 (1-2) :479-494
[3]   On time-splitting spectral approximations for the Schrodinger equation in the semiclassical regime [J].
Bao, WZ ;
Jin, S ;
Markowich, PA .
JOURNAL OF COMPUTATIONAL PHYSICS, 2002, 175 (02) :487-524
[4]  
Bensoussan A., 1978, Asymptotic analysis for periodic structures
[5]   Semiclassical asymptotics for weakly nonlinear Bloch waves [J].
Carles, R ;
Markowich, PA ;
Sparber, C .
JOURNAL OF STATISTICAL PHYSICS, 2004, 117 (1-2) :343-375
[6]  
Cheng Li-Tien, 2003, Commun. Math. Sci., V1, P593
[7]   Gaussian beam construction for adiabatic perturbations [J].
Dimassi, M. ;
Guillot, J. -C. ;
Ralston, J. .
MATHEMATICAL PHYSICS ANALYSIS AND GEOMETRY, 2006, 9 (03) :187-201
[8]  
GARCIACERVERA C, LINEAR SCALING SUBSP
[9]   Multiphase semiclassical approximation of an electron in a one-dimensional crystalline lattice - III. From ab initio models to WKB for Schrodinger-Poisson [J].
Gosse, L ;
Mauser, NJ .
JOURNAL OF COMPUTATIONAL PHYSICS, 2006, 211 (01) :326-346
[10]   Multiphase semiclassical approximation of an electron in a one-dimensional crystalline lattice II. Impurities, confinement and Bloch oscillations [J].
Gosse, L .
JOURNAL OF COMPUTATIONAL PHYSICS, 2004, 201 (01) :344-375