Bergman Kernel Function for Hartogs Domains Over Bounded Homogeneous Domains

被引:13
作者
Ishi, Hideyuki [1 ]
Park, Jong-Do [2 ,3 ]
Yamamori, Atsushi [4 ]
机构
[1] Nagoya Univ, Grad Sch Math, Chikusa Ku, Furo Cho, Nagoya, Aichi 4648602, Japan
[2] Kyung Hee Univ, Dept Math, Seoul 130701, South Korea
[3] Kyung Hee Univ, Res Inst Basic Sci, Seoul 130701, South Korea
[4] Acad Sinica 6F, Inst Math, Astron Math Bldg,1 Sec 4,Roosevelt Rd, Taipei 10617, Taiwan
基金
新加坡国家研究基金会;
关键词
Bergman kernel; Hartogs domains; Bounded homogeneous domains; Siegel domain; Normal j-algebra; COMPLEX ELLIPSOIDS; EXPLICIT FORMULAS; SYMMETRIC DOMAINS; SIEGEL DOMAINS; ZEROS; REPRESENTATIONS; CLASSIFICATION; CURVATURE;
D O I
10.1007/s12220-016-9737-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We obtain an explicit formula of the Bergman kernel for Hartogs domains over bounded homogeneous domains. In order to find a simple formula, we consider a Siegel domain biholomorphic to the bounded homogeneous domain and use its Bergman kernel obtained by Gindikin. The Bergman kernel of the Hartogs domain is expressed by two different forms and the main part of the Bergman kernel is a polynomial whose coefficients contain the Stirling number of the second kind. As an application of our formula, we investigate the Lu Qi-Keng problem for our Hartogs domains and give some important examples of Hartogs domains whose Bergman kernels are zero-free.
引用
收藏
页码:1703 / 1736
页数:34
相关论文
共 31 条
[1]   The explicit forms and zeros of the Bergman kernel function for Hartogs type domains [J].
Ahn, Heungju ;
Park, Jong-Do .
JOURNAL OF FUNCTIONAL ANALYSIS, 2012, 262 (08) :3518-3547
[2]  
[Anonymous], 1998, THEORY MATRICES
[3]  
Bergman S., 1970, The Kernel Function and Conformal Mapping (Mathematical Surveys Number V)
[4]   The Bergman kernel function: Explicit formulas and zeroes [J].
Boas, HP ;
Fu, SQ ;
Straube, EJ .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1999, 127 (03) :805-811
[5]  
Cvijovic D., 2010, PHYSICA A, V8, P1594
[6]   A CHARACTERIZATION OF BOUNDED SYMMETRIC DOMAINS BY CURVATURE [J].
DATRI, JE ;
MIATELLO, ID .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1983, 276 (02) :531-540
[7]  
Faraut J., 1994, Oxford Mathematical Monographs
[8]   On canonical metrics on Cartan-Hartogs domains [J].
Feng, Zhiming ;
Tu, Zhenhan .
MATHEMATISCHE ZEITSCHRIFT, 2014, 278 (1-2) :301-320
[9]  
Gindikin S.G., 1964, Russ. Math. Surv., V19, P1, DOI 10.1070/RM1964v019n04ABEH001153
[10]   The Bergman kernels of generalized Bergman-Hartogs domains [J].
Hao, Yihong ;
Wang, An .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2015, 429 (01) :326-336