Thermocapillary instabilities in a horizontal liquid layer under partial basal slip

被引:17
|
作者
Kowal, Katarzyna N. [1 ,2 ,3 ]
Davis, Stephen H. [1 ]
Voorhees, Peter W. [4 ]
机构
[1] Northwestern Univ, Dept Engn Sci & Appl Math, 2145 Sheridan Rd, Evanston, IL 60208 USA
[2] Univ Cambridge, Dept Appl Math & Theoret Phys, Wilberforce Rd, Cambridge CB3 0WA, England
[3] Univ Cambridge, Trinity Coll, Cambridge CB2 1TQ, England
[4] Northwestern Univ, Dept Mat Sci & Engn, 2225 Campus Dr, Evanston, IL 60208 USA
关键词
convection; interfacial flows (free surface); Marangoni convection; MARANGONI NUMBER CONVECTION; SURFACE; DENUDATION; CAVITY; FLOWS;
D O I
10.1017/jfm.2018.684
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
We investigate the onset of three-dimensional hydrothermal waves in a low-capillarynumber liquid layer of arbitrary depth, bounded by a free liquid-gas interface from above and a partial slip, rigid surface from below. A selection of two- and three-dimensional hydrothermal waves, longitudinal rolls and longitudinal travelling waves, form the preferred mode of instability, which depends intricately on the magnitude of the basal slip. Partial slip is destabilizing for all modes of instability. Specifically, the minimal Marangoni number required for the onset of instability follows M-m similar to a(beta(-1) + b)(-c) for each mode, where a, b, c > 0 and beta(-1) is the slip parameter. In the limit of free slip, longitudinal travelling waves disappear in favour of longitudinal rolls. With increasing slip, it is common for two-dimensional hydrothermal waves to exchange stability in favour of longitudinal rolls and oblique hydrothermal waves. Two types of oblique hydrothermal waves appear under partial slip, which exchange stability with increasing slip. The oblique mode that is preferred under no slip persists and remains near longitudinal for small slip parameters.
引用
收藏
页码:839 / 859
页数:21
相关论文
共 50 条
  • [1] Surface deformations in dynamic thermocapillary convection under partial slip
    Kowal, Katarzyna N.
    Davis, Stephen H.
    Voorhees, Peter W.
    PHYSICAL REVIEW E, 2019, 100 (02)
  • [2] Thermocapillary instabilities in a liquid layer subjected to an oblique temperature gradient
    Patne, Ramkarn
    Agnon, Yehuda
    Oron, Alexander
    JOURNAL OF FLUID MECHANICS, 2021, 906
  • [3] Thermocapillary instabilities in the liquid layer with two deformable surfaces
    Hu, Kai-Xin
    Sun, Yu-Wen
    Hu, Peng-Hui
    Wang, Sheng
    Chen, Qi-Sheng
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2024, 221
  • [4] Thermocapillary deformation of a horizontal liquid layer under flash local surface heating
    Marchuk, I. V.
    JOURNAL OF ENGINEERING THERMOPHYSICS, 2015, 24 (04) : 381 - 385
  • [5] Thermocapillary instability of a liquid layer under heat flux modulation
    Smorodin, B. L.
    Mikishev, A. B.
    Nepomnyashchy, A. A.
    Myznikova, B. I.
    PHYSICS OF FLUIDS, 2009, 21 (06)
  • [6] A comprehensive study of thermocapillary rupture of liquid layer
    Lobasov, A. S.
    Shebelev, A. V.
    Kochkin, D. Y.
    Mungalov, A. S.
    Zaitsev, D. V.
    Minakov, A. V.
    Karchevsky, A. L.
    Kabov, O. A.
    PHYSICS OF FLUIDS, 2024, 36 (10)
  • [7] Thermocapillary instabilities of liquid layers on an inclined plane
    Yan, Chen-Yi
    Hu, Kai-Xin
    Chen, Qi-Sheng
    PHYSICS OF FLUIDS, 2018, 30 (08)
  • [8] Instabilities in a horizontal liquid layer in cocurrent gas flow with an evaporating interface
    Liu, R.
    Kabov, O. A.
    PHYSICAL REVIEW E, 2012, 85 (06):
  • [9] Thermocapillary instabilities in a laterally heated liquid bridge with end wall rotation
    Kahouadji, L.
    Houchens, B. C.
    Witkowski, L. Martin
    PHYSICS OF FLUIDS, 2011, 23 (10)
  • [10] Instabilities of thermocapillary-buoyancy convection in open rectangular liquid layers
    Jiang, Huan
    Duan, Li
    Kang, Qi
    CHINESE PHYSICS B, 2017, 26 (11)