Solvatochromic dipolarity micro-sensor behaviour in binary solvent systems of the (water plus ionic liquid) type: application of preferential solvation model and linear solvation energy relationships

被引:13
作者
Adam, Claudia G. [1 ,2 ]
Virginia Bravo, M. [2 ]
Mancini, Pedro M. E. [2 ]
Fortunato, Graciela G. [2 ]
机构
[1] Natl Council Sci & Tech Res CONICET, Buenos Aires, DF, Argentina
[2] Univ Nacl Litoral, Fac Ingn Quim, Dept Quim, Area Quim Organ, RA-3000 Santa Fe, Argentina
关键词
binary solvent mixtures; empirical parameters; ionic liquid; linear solvation energy relationships; microscopic properties; solvatochromic probe; NUCLEOPHILIC-SUBSTITUTION REACTIONS; AGGREGATION BEHAVIOR; AQUEOUS-SOLUTIONS; 1-(1-BUTYL)-3-METHYLIMIDAZOLIUM TETRAFLUOROBORATE; CHEMICAL PROBES; MIXTURES; POLARITY; PARAMETERS; SCALE; INDICATORS;
D O I
10.1002/poc.3346
中图分类号
O62 [有机化学];
学科分类号
070303 ; 081704 ;
摘要
The type of specific intermolecular and interionic interactions that are established when an ionic liquid is dissolved in water was here analysed. The study of the solvatochromic response of dipolarity micro-sensors based on Reichardt E-T(30) and Kamlet-Abboud-Taft solvent scales and the application of the solvent exchange model confirmed the formation of different intersolvent complexes in binary mixtures of (water+[C(4)mim] [BF4]/[Br]) type. These complexes provide H-bond or electron pairs to the polar network, respectively. Moreover, for 4-methoxybenzenesulfonyl chloride hydrolysis reaction in the (water+[C(4)mim] [BF4]) system, a higher inhibition (13 times) on the k(obs) values was observed. Multiple linear regression analysis that allows confirming the solvent effect upon the reactive system is due to the hydrogen-bond donor properties of intersolvent complex formed. Then, the correlation between two different solvent-dependent processes proved to be successful. Copyright (c) 2014 John Wiley & Sons, Ltd.
引用
收藏
页码:841 / 849
页数:9
相关论文
共 38 条
[1]   Understanding the polarity of ionic liquids [J].
Ab Rani, M. A. ;
Brant, A. ;
Crowhurst, L. ;
Dolan, A. ;
Lui, M. ;
Hassan, N. H. ;
Hallett, J. P. ;
Hunt, P. A. ;
Niedermeyer, H. ;
Perez-Arlandis, J. M. ;
Schrems, M. ;
Welton, T. ;
Wilding, R. .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2011, 13 (37) :16831-16840
[2]   Molecular solvent effect on the acidity constant of protic ionic liquids [J].
Adam, Claudia ;
Bravo, M. Virginia ;
Mancini, Pedro M. E. .
TETRAHEDRON LETTERS, 2014, 55 (01) :148-150
[3]   Aggregation behavior of aqueous solutions of ionic liquids [J].
Bowers, J ;
Butts, CP ;
Martin, PJ ;
Vergara-Gutierrez, MC ;
Heenan, RK .
LANGMUIR, 2004, 20 (06) :2191-2198
[4]  
Buhvestov U, 1998, J PHYS ORG CHEM, V11, P185, DOI 10.1002/(SICI)1099-1395(199803)11:3<185::AID-POC993>3.3.CO
[5]  
2-X
[6]  
Cammarata L, 2001, PHYS CHEM CHEM PHYS, V3, P5192, DOI 10.1039/b106900d
[7]   New Solvents Designed on the Basis of the Molecular-Microscopic Properties of Binary Mixtures of the Type (Protic Molecular Solvent+1-Butyl-3-methylimidazolium-Based Ionic Liquid) [J].
Fortunato, Graciela G. ;
Mancini, Pedro M. ;
Virginia Bravo, M. ;
Adam, Claudia G. .
JOURNAL OF PHYSICAL CHEMISTRY B, 2010, 114 (36) :11804-11819
[8]   An overview of the mutual solubilities of water-imidazolium-based ionic liquids systems [J].
Freire, Mara G. ;
Santos, Luis M. N. B. F. ;
Fernandes, Ana M. ;
Coutinho, Joao A. P. ;
Marrucho, Isabel M. .
FLUID PHASE EQUILIBRIA, 2007, 261 (1-2) :449-454
[9]   Room-Temperature Ionic Liquids: Solvents for Synthesis and Catalysis. 2 [J].
Hallett, Jason P. ;
Welton, Tom .
CHEMICAL REVIEWS, 2011, 111 (05) :3508-3576
[10]   Solvatochromic parameters for binary mixtures of 1-(1-butyl)-3-methylimidazolium tetrafluoroborate with some protic molecular solvents [J].
Harifi-Mood, AR ;
Habibi-Yangjeh, A ;
Gholami, MR .
JOURNAL OF PHYSICAL CHEMISTRY B, 2006, 110 (13) :7073-7078