On the optimal knots of first degree splines

被引:0
|
作者
Hamideh, H [1 ]
机构
[1] King Saud Univ, Coll Sci, Dept Math, Riyadh 11451, Saudi Arabia
来源
KUWAIT JOURNAL OF SCIENCE & ENGINEERING | 2002年 / 29卷 / 01期
关键词
D O I
暂无
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Suppose that f is an element of C[a,b] is a strictly convex function. Let U = {u(0),..., u(n)} be a set of knots on [a,b], and S(U,.) the linear spline with knots set U. In this paper we consider best L-1-approximation with at most n-1 varying partition points a=u(0) < u(1) <...<u(n)=b. A novel algorithm is given to obtain optimal knots of L-1-approximation. starting with any of knot-set U-(0), we construct a sequence of knot-sets U-(i). The corresponding sequence of linear splines SW are constructed such that the corresponding sequence of L-1-errors will be a decreasing one.
引用
收藏
页码:1 / 13
页数:13
相关论文
共 50 条