Multiscale analysis and algorithm of transient electromagnetic scattering from heterogeneous materials
被引:2
作者:
Zhang, Yongwei
论文数: 0引用数: 0
h-index: 0
机构:
Zhengzhou Univ, Sch Math & Stat, Zhengzhou 450001, Peoples R ChinaZhengzhou Univ, Sch Math & Stat, Zhengzhou 450001, Peoples R China
Zhang, Yongwei
[1
]
Cao, Liqun
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Acad Sci, Univ Chinese Acad Sci, Inst Computat Math & Sci Engn Comp, LSEC,NCMIS,Acad Math & Syst Sci, Beijing 100190, Peoples R ChinaZhengzhou Univ, Sch Math & Stat, Zhengzhou 450001, Peoples R China
Cao, Liqun
[2
]
Shi, Dongyang
论文数: 0引用数: 0
h-index: 0
机构:
Zhengzhou Univ, Sch Math & Stat, Zhengzhou 450001, Peoples R ChinaZhengzhou Univ, Sch Math & Stat, Zhengzhou 450001, Peoples R China
Shi, Dongyang
[1
]
Lin, Yanping
论文数: 0引用数: 0
h-index: 0
机构:
Hong Kong Polytech Univ, Dept Appl Math, Hung Hom, Kowloon, Hong Kong, Peoples R ChinaZhengzhou Univ, Sch Math & Stat, Zhengzhou 450001, Peoples R China
Lin, Yanping
[3
]
机构:
[1] Zhengzhou Univ, Sch Math & Stat, Zhengzhou 450001, Peoples R China
[2] Chinese Acad Sci, Univ Chinese Acad Sci, Inst Computat Math & Sci Engn Comp, LSEC,NCMIS,Acad Math & Syst Sci, Beijing 100190, Peoples R China
[3] Hong Kong Polytech Univ, Dept Appl Math, Hung Hom, Kowloon, Hong Kong, Peoples R China
Transient electromagnetic scattering;
Heterogeneous materials;
The multiscale asymptotic expansion;
Finite element method;
DEPENDENT MAXWELLS EQUATIONS;
FINITE-ELEMENTS;
HOMOGENIZATION;
SINGULARITIES;
PARAMETERS;
D O I:
10.1016/j.cam.2021.113427
中图分类号:
O29 [应用数学];
学科分类号:
070104 ;
摘要:
The paper is concerned with the multiscale analysis of the scattering problem for three-dimensional time-dependent Maxwell's equations in heterogeneous materials. Firstly, an exact transparent boundary condition is developed to reduce the scattering problem into an initial-boundary value problem in heterogeneous materials. Secondly, the multiscale asymptotic expansions of the solution for the reduced problem and an explicit convergence rate for the approximate solutions are presented. Finally, a multiscale Crank-Nicolson mixed finite element method is proposed where the first order approximation of the Silver-Muller radiation condition is utilized to truncate infinite domain problems. Numerical experiments are then carried out to validate the theoretical results. (c) 2021 Elsevier B.V. All rights reserved.
机构:
North Eastern Fed Univ, Lab Computat Technol Modeling Multiphys & Multisca, Yakutsk 677980, Republic of Sak, RussiaNorth Eastern Fed Univ, Lab Computat Technol Modeling Multiphys & Multisca, Yakutsk 677980, Republic of Sak, Russia
Kalachikova, Uygulaana
Vasilyeva, Maria
论文数: 0引用数: 0
h-index: 0
机构:
Texas A&M Univ, Dept Math & Stat, Corpus Christi, TX USANorth Eastern Fed Univ, Lab Computat Technol Modeling Multiphys & Multisca, Yakutsk 677980, Republic of Sak, Russia
Vasilyeva, Maria
Harris, Isaac
论文数: 0引用数: 0
h-index: 0
机构:
Purdue Univ, Dept Math, W Lafayette, IN USANorth Eastern Fed Univ, Lab Computat Technol Modeling Multiphys & Multisca, Yakutsk 677980, Republic of Sak, Russia
Harris, Isaac
Chung, Eric T.
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Univ Hong Kong CUHK, Dept Math, Hong Kong, Peoples R ChinaNorth Eastern Fed Univ, Lab Computat Technol Modeling Multiphys & Multisca, Yakutsk 677980, Republic of Sak, Russia
机构:
North Eastern Fed Univ, Lab Computat Technol Modeling Multiphys & Multisca, Yakutsk 677980, Republic of Sak, RussiaNorth Eastern Fed Univ, Lab Computat Technol Modeling Multiphys & Multisca, Yakutsk 677980, Republic of Sak, Russia
Kalachikova, Uygulaana
Vasilyeva, Maria
论文数: 0引用数: 0
h-index: 0
机构:
Texas A&M Univ, Dept Math & Stat, Corpus Christi, TX USANorth Eastern Fed Univ, Lab Computat Technol Modeling Multiphys & Multisca, Yakutsk 677980, Republic of Sak, Russia
Vasilyeva, Maria
Harris, Isaac
论文数: 0引用数: 0
h-index: 0
机构:
Purdue Univ, Dept Math, W Lafayette, IN USANorth Eastern Fed Univ, Lab Computat Technol Modeling Multiphys & Multisca, Yakutsk 677980, Republic of Sak, Russia
Harris, Isaac
Chung, Eric T.
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Univ Hong Kong CUHK, Dept Math, Hong Kong, Peoples R ChinaNorth Eastern Fed Univ, Lab Computat Technol Modeling Multiphys & Multisca, Yakutsk 677980, Republic of Sak, Russia