Multiscale analysis and algorithm of transient electromagnetic scattering from heterogeneous materials

被引:2
作者
Zhang, Yongwei [1 ]
Cao, Liqun [2 ]
Shi, Dongyang [1 ]
Lin, Yanping [3 ]
机构
[1] Zhengzhou Univ, Sch Math & Stat, Zhengzhou 450001, Peoples R China
[2] Chinese Acad Sci, Univ Chinese Acad Sci, Inst Computat Math & Sci Engn Comp, LSEC,NCMIS,Acad Math & Syst Sci, Beijing 100190, Peoples R China
[3] Hong Kong Polytech Univ, Dept Appl Math, Hung Hom, Kowloon, Hong Kong, Peoples R China
基金
中国国家自然科学基金;
关键词
Transient electromagnetic scattering; Heterogeneous materials; The multiscale asymptotic expansion; Finite element method; DEPENDENT MAXWELLS EQUATIONS; FINITE-ELEMENTS; HOMOGENIZATION; SINGULARITIES; PARAMETERS;
D O I
10.1016/j.cam.2021.113427
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The paper is concerned with the multiscale analysis of the scattering problem for three-dimensional time-dependent Maxwell's equations in heterogeneous materials. Firstly, an exact transparent boundary condition is developed to reduce the scattering problem into an initial-boundary value problem in heterogeneous materials. Secondly, the multiscale asymptotic expansions of the solution for the reduced problem and an explicit convergence rate for the approximate solutions are presented. Finally, a multiscale Crank-Nicolson mixed finite element method is proposed where the first order approximation of the Silver-Muller radiation condition is utilized to truncate infinite domain problems. Numerical experiments are then carried out to validate the theoretical results. (c) 2021 Elsevier B.V. All rights reserved.
引用
收藏
页数:17
相关论文
共 50 条
  • [31] A MULTISCALE COMPUTATIONAL METHOD FOR 2D ELASTOPLASTIC DYNAMIC ANALYSIS OF HETEROGENEOUS MATERIALS
    Zhang, Hongwu
    Liu, Hui
    INTERNATIONAL JOURNAL FOR MULTISCALE COMPUTATIONAL ENGINEERING, 2014, 12 (02) : 127 - 154
  • [32] Multiscale nonlinear thermoelastic analysis of heterogeneous multiphase materials with temperature-dependent properties
    Zhang, H. W.
    Yang, D. S.
    Zhang, S.
    Zheng, Y. G.
    FINITE ELEMENTS IN ANALYSIS AND DESIGN, 2014, 88 : 97 - 117
  • [33] Multiscale fatigue life prediction model for heterogeneous materials
    Fish, Jacob
    Bailakanavar, Mahesh
    Powers, Lynn
    Cook, Thomas
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2012, 91 (10) : 1087 - 1104
  • [34] Numerical multiscale solution strategy for fracturing heterogeneous materials
    Kaczmarczyk, Lukasz
    Pearce, Chris J.
    Bicanic, Nenad
    de Souza Neto, Eduardo
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2010, 199 (17-20) : 1100 - 1113
  • [35] Micromechanical analysis of heterogeneous structural materials
    Nemecek, Jiri
    Kralik, Vlastimil
    Vondrejc, Jaroslav
    CEMENT & CONCRETE COMPOSITES, 2013, 36 : 85 - 92
  • [36] Finite element analysis of electromagnetic scattering from a cavity
    Van, T
    Wood, AW
    IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2003, 51 (01) : 130 - 137
  • [37] A uniform multiscale method for 3D static and dynamic analyses of heterogeneous materials
    Liu, H.
    Zhang, H. W.
    COMPUTATIONAL MATERIALS SCIENCE, 2013, 79 : 159 - 173
  • [38] Development of a Three-Dimensional Multiscale Octree SBFEM for Viscoelastic Problems of Heterogeneous Materials
    Xu, Xu
    Wang, Xiaoteng
    Yang, Haitian
    Yang, Zhenjun
    He, Yiqian
    CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES, 2024, 140 (02): : 1831 - 1861
  • [39] Subsurface Target Recognition Based on Transient Electromagnetic Scattering
    Lui, Hoi-Shun
    Aldhubaib, Faisal
    Shuley, Nicholas V. Z.
    Hui, Hon Tat
    IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2009, 57 (10) : 3398 - 3401
  • [40] Extended multiscale isogeometric analysis for mechanical simulation of two-dimensional periodic heterogeneous materials
    Xia, Yang
    Niu, Hongze
    Zhang, Zian
    Liu, Hui
    Wu, Chenwei
    COMPOSITE STRUCTURES, 2023, 315